Privacy-Preserving and Trustworthy Deep Learning for Medical Imaging
- URL: http://arxiv.org/abs/2407.00538v1
- Date: Sat, 29 Jun 2024 22:26:05 GMT
- Title: Privacy-Preserving and Trustworthy Deep Learning for Medical Imaging
- Authors: Kiarash Sedghighadikolaei, Attila A Yavuz,
- Abstract summary: Radiomics leverage Machine Learning (ML) to analyze medical images accurately and efficiently for precision medicine.
Current methods rely on Deep Learning (DL) to improve performance and accuracy (Deep Radiomics)
In Deep Radiomics, where efficiency, accuracy, and privacy are crucial, many PETs, while theoretically applicable, may not be practical without specialized optimizations or hybrid designs.
This work addresses this research gap by classifying existing PETs, presenting practical hybrid PETS constructions, and a taxonomy illustrating their potential integration with the Deep Radiomics pipeline.
- Score: 2.156208381257605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The shift towards efficient and automated data analysis through Machine Learning (ML) has notably impacted healthcare systems, particularly Radiomics. Radiomics leverages ML to analyze medical images accurately and efficiently for precision medicine. Current methods rely on Deep Learning (DL) to improve performance and accuracy (Deep Radiomics). Given the sensitivity of medical images, ensuring privacy throughout the Deep Radiomics pipeline-from data generation and collection to model training and inference-is essential, especially when outsourced. Thus, Privacy-Enhancing Technologies (PETs) are crucial tools for Deep Radiomics. Previous studies and systematization efforts have either broadly overviewed PETs and their applications or mainly focused on subsets of PETs for ML algorithms. In Deep Radiomics, where efficiency, accuracy, and privacy are crucial, many PETs, while theoretically applicable, may not be practical without specialized optimizations or hybrid designs. Additionally, not all DL models are suitable for Radiomics. Consequently, there is a need for specialized studies that investigate and systematize the effective and practical integration of PETs into the Deep Radiomics pipeline. This work addresses this research gap by (1) classifying existing PETs, presenting practical hybrid PETS constructions, and a taxonomy illustrating their potential integration with the Deep Radiomics pipeline, with comparative analyses detailing assumptions, architectural suitability, and security, (2) Offering technical insights, describing potential challenges and means of combining PETs into the Deep Radiomics pipeline, including integration strategies, subtilities, and potential challenges, (3) Proposing potential research directions, identifying challenges, and suggesting solutions to enhance the PETs in Deep Radiomics.
Related papers
- Enhancing Lesion Segmentation in PET/CT Imaging with Deep Learning and Advanced Data Preprocessing Techniques [2.4549652987344546]
This research employs deep learning to enhance lesion segmentation in PET/CT imaging.
Our methodical approach includes robust preprocessing and data augmentation techniques to ensure model robustness and generalizability.
This study aims to contribute to the standardization of preprocessing and augmentation strategies in PET/CT imaging.
arXiv Detail & Related papers (2024-09-15T16:27:34Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - Revolutionizing Disease Diagnosis with simultaneous functional PET/MR and Deeply Integrated Brain Metabolic, Hemodynamic, and Perfusion Networks [40.986069119392944]
We propose MX-ARM, a multimodal MiXture-of-experts Alignment Reconstruction and Model.
It is modality detachable and exchangeable, allocating different multi-layer perceptrons dynamically ("mixture of experts") through learnable weights to learn respective representations from different modalities.
arXiv Detail & Related papers (2024-03-29T08:47:49Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Radiology-GPT: A Large Language Model for Radiology [74.07944784968372]
We introduce Radiology-GPT, a large language model for radiology.
It demonstrates superior performance compared to general language models such as StableLM, Dolly and LLaMA.
It exhibits significant versatility in radiological diagnosis, research, and communication.
arXiv Detail & Related papers (2023-06-14T17:57:24Z) - Physics-driven Deep Learning for PET/MRI [2.2113800586902608]
We review physics- and data-driven reconstruction techniques for simultaneous positron emission tomography (PET) / magnetic resonance imaging (MRI) systems.
These reconstruction approaches utilize priors, either structural or statistical, together with a physics-based description of the PET system response.
We elucidate how a multi-faceted approach accommodates hybrid data- and physics-driven machine learning for reconstruction of 3D PET/MRI.
arXiv Detail & Related papers (2022-06-11T21:35:27Z) - Artificial Intelligence-Based Detection, Classification and
Prediction/Prognosis in PET Imaging: Towards Radiophenomics [2.2509387878255818]
This work reviews AI-based techniques, with a special focus on oncological PET and PET/CT imaging.
There is a spectrum of tumor histologies from benign to malignant that can be identified by AI-based classification approaches.
Radiomics analysis has the potential to be utilized as a noninvasive technique for the accurate characterization of tumors.
arXiv Detail & Related papers (2021-10-20T01:05:47Z) - Potential Applications of Artificial Intelligence and Machine Learning
in Radiochemistry and Radiochemical Engineering [0.0]
Artificial intelligence and machine learning are poised to disrupt PET imaging from bench to clinic.
In this perspective we offer insights into how the technology could be applied to improve the design and synthesis of new radiopharmaceuticals for PET imaging.
arXiv Detail & Related papers (2021-08-05T18:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.