論文の概要: Answering real-world clinical questions using large language model based systems
- arxiv url: http://arxiv.org/abs/2407.00541v1
- Date: Sat, 29 Jun 2024 22:39:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 02:36:46.486194
- Title: Answering real-world clinical questions using large language model based systems
- Title(参考訳): 大規模言語モデルに基づく実世界の臨床質問への回答
- Authors: Yen Sia Low, Michael L. Jackson, Rebecca J. Hyde, Robert E. Brown, Neil M. Sanghavi, Julian D. Baldwin, C. William Pike, Jananee Muralidharan, Gavin Hui, Natasha Alexander, Hadeel Hassan, Rahul V. Nene, Morgan Pike, Courtney J. Pokrzywa, Shivam Vedak, Adam Paul Yan, Dong-han Yao, Amy R. Zipursky, Christina Dinh, Philip Ballentine, Dan C. Derieg, Vladimir Polony, Rehan N. Chawdry, Jordan Davies, Brigham B. Hyde, Nigam H. Shah, Saurabh Gombar,
- Abstract要約: 大規模言語モデル(LLM)は、出版された文献を要約するか、実世界データ(RWD)に基づいた新しい研究を生成することによって、両方の課題に対処できる可能性がある。
臨床50問に回答する5つのLCMベースのシステムについて検討し,9名の医師に関連性,信頼性,行動性について検討した。
- 参考スコア(独自算出の注目度): 2.2605659089865355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evidence to guide healthcare decisions is often limited by a lack of relevant and trustworthy literature as well as difficulty in contextualizing existing research for a specific patient. Large language models (LLMs) could potentially address both challenges by either summarizing published literature or generating new studies based on real-world data (RWD). We evaluated the ability of five LLM-based systems in answering 50 clinical questions and had nine independent physicians review the responses for relevance, reliability, and actionability. As it stands, general-purpose LLMs (ChatGPT-4, Claude 3 Opus, Gemini Pro 1.5) rarely produced answers that were deemed relevant and evidence-based (2% - 10%). In contrast, retrieval augmented generation (RAG)-based and agentic LLM systems produced relevant and evidence-based answers for 24% (OpenEvidence) to 58% (ChatRWD) of questions. Only the agentic ChatRWD was able to answer novel questions compared to other LLMs (65% vs. 0-9%). These results suggest that while general-purpose LLMs should not be used as-is, a purpose-built system for evidence summarization based on RAG and one for generating novel evidence working synergistically would improve availability of pertinent evidence for patient care.
- Abstract(参考訳): 医療上の決定を導くための証拠は、関連性があり信頼できる文献の欠如や、特定の患者に対する既存の研究の文脈化の難しさによって制限されることが多い。
大規模言語モデル(LLM)は、出版された文献を要約するか、実世界データ(RWD)に基づいた新しい研究を生成することによって、両方の課題に対処する可能性がある。
臨床50問に回答する5つのLCMベースのシステムについて検討し,9名の医師に関連性,信頼性,行動性について検討した。
現状では、汎用LLM(ChatGPT-4、Claude 3 Opus、Gemini Pro 1.5)は、関連性がありエビデンスベースの回答(2%から10%)をほとんど生成しなかった。
対照的に、検索強化生成(RAG)およびエージェントLLMシステムは、関連性およびエビデンスに基づく回答を24%から58%(ChatRWD)の質問に対して生成した。
エージェントのChatRWDだけが他のLSMと比較して新しい質問に答えることができた(65%対0-9%)。
これらの結果から,RAGに基づくエビデンス要約システムと,相乗的に働く新たなエビデンスを創出するシステムにより,患者に対する適切なエビデンスの有効性が向上することが示唆された。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - The Potential of LLMs in Medical Education: Generating Questions and Answers for Qualification Exams [9.802579169561781]
大規模言語モデル(LLM)は、数発のプロンプトに基づいて、医学的資格試験の質問とそれに対応する回答を生成することができる。
研究によると、LSMは数発のプロンプトを使った後、現実世界の医学試験の質問を効果的に模倣できることがわかった。
論文 参考訳(メタデータ) (2024-10-31T09:33:37Z) - Enhancing Large Language Models with Domain-specific Retrieval Augment Generation: A Case Study on Long-form Consumer Health Question Answering in Ophthalmology [34.82874325860935]
医学における大規模言語モデル(LLM)は、幻覚的証拠に基づく証拠を欠いた応答を生成する可能性がある。
我々は,7万件の眼科用文書を用いたRAGパイプラインを開発し,推測時間にLCMを増大させるために関連文書を検索した。
医療従事者10名を対象に,RAGの有無を問う質問100件において, LLMの500件以上の基準を含む回答を評価した。
論文 参考訳(メタデータ) (2024-09-20T21:06:00Z) - Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
本稿では,レアな疾患の診断におけるLarge Language Models (LLMs) の性能を評価するために,レアな疾患問合せデータセット(ReDis-QA)を導入する。
ReDis-QAデータセットでは1360の高品質な質問応答ペアを収集し,205の稀な疾患をカバーした。
その後、いくつかのオープンソースのLCMをベンチマークし、希少疾患の診断がこれらのモデルにとって重要な課題であることを示した。
実験の結果,ReCOPは,ReDis-QAデータセット上でのLCMの精度を平均8%向上できることがわかった。
論文 参考訳(メタデータ) (2024-08-15T21:09:09Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - How do you know that? Teaching Generative Language Models to Reference Answers to Biomedical Questions [0.0]
大規模言語モデル(LLM)が最近,ユーザの質問に対するオンライン回答の主要なソースになっている。
雄弁な答えを提供する能力があるにもかかわらず、その正確さと信頼性は重大な課題となる。
本稿では, バイオメディカル検索強化生成システム(RAG)を導入し, 生成した応答の信頼性を高める。
論文 参考訳(メタデータ) (2024-07-06T09:10:05Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
大規模言語モデル(LLM)は様々な自然言語処理タスクで広く採用されている。
それらは、入力源から逸脱する不信または矛盾したコンテンツを生成し、深刻な結果をもたらす。
本稿では,LLMの生成した回答の幻覚を効果的に検出するために,RelDという頑健な識別器を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:47:42Z) - Perception of Knowledge Boundary for Large Language Models through Semi-open-ended Question Answering [67.94354589215637]
大きな言語モデル(LLM)は知識探索に広く用いられているが、幻覚に悩まされている。
本稿では,LLMの知識境界(KB)を半オープンな質問(SoeQ)で知覚する。
GPT-4 は SoeQ では性能が悪く,KB に気づいていないことが多い。
我々の補助モデルであるLLaMA-2-13Bは、より曖昧な答えを見つけるのに有効である。
論文 参考訳(メタデータ) (2024-05-23T10:00:14Z) - How well do LLMs cite relevant medical references? An evaluation
framework and analyses [18.1921791355309]
大規模言語モデル(LLM)は現在、様々な臨床領域の医療的問題に答えるために使用されている。
本稿では、LCMが生成するソースは、実際にそれらが生成するクレームをサポートしますか?
GPT-4は, 医師会の88%の時間と一致し, 情報源の妥当性を高い精度で検証できることを実証した。
論文 参考訳(メタデータ) (2024-02-03T03:44:57Z) - Quality of Answers of Generative Large Language Models vs Peer Patients
for Interpreting Lab Test Results for Lay Patients: Evaluation Study [5.823006266363981]
大規模言語モデル(LLM)は、患者が質問に答えられるための有望な道を開いた。
GPT-4, Meta LLaMA 2, MedAlpaca, ORCA_miniの4つのLSMから53問の回答を得た。
GPT-4の反応はより正確で、有用で、関連性があり、安全である。
論文 参考訳(メタデータ) (2024-01-23T22:03:51Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
本稿では,Rephrase and Respond'(RaR)という手法を提案する。
RaRは、パフォーマンスを改善するためのシンプルだが効果的なプロンプト方法として機能する。
また,RaRは理論的にも経験的にも,一般的なChain-of-Thought(CoT)法と相補的であることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:43:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。