Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with Energy-Based Models
- URL: http://arxiv.org/abs/2407.00626v2
- Date: Thu, 31 Oct 2024 11:39:25 GMT
- Title: Maximum Entropy Inverse Reinforcement Learning of Diffusion Models with Energy-Based Models
- Authors: Sangwoong Yoon, Himchan Hwang, Dohyun Kwon, Yung-Kyun Noh, Frank C. Park,
- Abstract summary: We present a maximum reinforcement learning (IRL) approach for improving the sample quality of diffusion generative models.
We train (or fine-tune) a diffusion model using the log density estimated from training data.
Our empirical studies show that diffusion models fine-tuned using DxMI can generate high-quality samples in as few as 4 and 10 steps.
- Score: 12.327318533784961
- License:
- Abstract: We present a maximum entropy inverse reinforcement learning (IRL) approach for improving the sample quality of diffusion generative models, especially when the number of generation time steps is small. Similar to how IRL trains a policy based on the reward function learned from expert demonstrations, we train (or fine-tune) a diffusion model using the log probability density estimated from training data. Since we employ an energy-based model (EBM) to represent the log density, our approach boils down to the joint training of a diffusion model and an EBM. Our IRL formulation, named Diffusion by Maximum Entropy IRL (DxMI), is a minimax problem that reaches equilibrium when both models converge to the data distribution. The entropy maximization plays a key role in DxMI, facilitating the exploration of the diffusion model and ensuring the convergence of the EBM. We also propose Diffusion by Dynamic Programming (DxDP), a novel reinforcement learning algorithm for diffusion models, as a subroutine in DxMI. DxDP makes the diffusion model update in DxMI efficient by transforming the original problem into an optimal control formulation where value functions replace back-propagation in time. Our empirical studies show that diffusion models fine-tuned using DxMI can generate high-quality samples in as few as 4 and 10 steps. Additionally, DxMI enables the training of an EBM without MCMC, stabilizing EBM training dynamics and enhancing anomaly detection performance.
Related papers
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
We develop constrained diffusion models based on desired distributions informed by requirements.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Generalized Contrastive Divergence: Joint Training of Energy-Based Model
and Diffusion Model through Inverse Reinforcement Learning [13.22531381403974]
Generalized Contrastive Divergence (GCD) is a novel objective function for training an energy-based model (EBM) and a sampler simultaneously.
We present preliminary yet promising results showing that joint training is beneficial for both EBM and a diffusion model.
arXiv Detail & Related papers (2023-12-06T10:10:21Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
Training energy-based models (EBMs) on high-dimensional data can be both challenging and time-consuming.
There exists a noticeable gap in sample quality between EBMs and other generative frameworks like GANs and diffusion models.
We propose cooperative diffusion recovery likelihood (CDRL), an effective approach to tractably learn and sample from a series of EBMs.
arXiv Detail & Related papers (2023-09-10T22:05:24Z) - Exploring the Optimal Choice for Generative Processes in Diffusion
Models: Ordinary vs Stochastic Differential Equations [6.2284442126065525]
We study the problem mathematically for two limiting scenarios: the zero diffusion (ODE) case and the large diffusion case.
Our findings indicate that when the perturbation occurs at the end of the generative process, the ODE model outperforms the SDE model with a large diffusion coefficient.
arXiv Detail & Related papers (2023-06-03T09:27:15Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
We propose a novel framework that guides the training-phase of diffusion models via reinforcement learning (RL)
RL enables calculating policy gradients via samples from a pay-off distribution proportional to exponential scaled rewards, rather than from policies themselves.
Experiments on 3D shape and molecule generation tasks show significant improvements over existing conditional diffusion models.
arXiv Detail & Related papers (2023-04-14T13:51:26Z) - Restoration based Generative Models [0.886014926770622]
Denoising diffusion models (DDMs) have attracted increasing attention by showing impressive synthesis quality.
In this paper, we establish the interpretation of DDMs in terms of image restoration (IR)
We propose a multi-scale training, which improves the performance compared to the diffusion process, by taking advantage of the flexibility of the forward process.
We believe that our framework paves the way for designing a new type of flexible general generative model.
arXiv Detail & Related papers (2023-02-20T00:53:33Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.