CaFNet: A Confidence-Driven Framework for Radar Camera Depth Estimation
- URL: http://arxiv.org/abs/2407.00697v3
- Date: Fri, 30 Aug 2024 13:25:50 GMT
- Title: CaFNet: A Confidence-Driven Framework for Radar Camera Depth Estimation
- Authors: Huawei Sun, Hao Feng, Julius Ott, Lorenzo Servadei, Robert Wille,
- Abstract summary: This paper introduces a two-stage, end-to-end trainable Confidence-aware Fusion Net (CaFNet) for dense depth estimation.
The first stage addresses radar-specific challenges, such as ambiguous elevation and noisy measurements.
For the final depth estimation, we innovate a confidence-aware gated fusion mechanism to integrate radar and image features effectively.
- Score: 6.9404362058736995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth estimation is critical in autonomous driving for interpreting 3D scenes accurately. Recently, radar-camera depth estimation has become of sufficient interest due to the robustness and low-cost properties of radar. Thus, this paper introduces a two-stage, end-to-end trainable Confidence-aware Fusion Net (CaFNet) for dense depth estimation, combining RGB imagery with sparse and noisy radar point cloud data. The first stage addresses radar-specific challenges, such as ambiguous elevation and noisy measurements, by predicting a radar confidence map and a preliminary coarse depth map. A novel approach is presented for generating the ground truth for the confidence map, which involves associating each radar point with its corresponding object to identify potential projection surfaces. These maps, together with the initial radar input, are processed by a second encoder. For the final depth estimation, we innovate a confidence-aware gated fusion mechanism to integrate radar and image features effectively, thereby enhancing the reliability of the depth map by filtering out radar noise. Our methodology, evaluated on the nuScenes dataset, demonstrates superior performance, improving upon the current leading model by 3.2% in Mean Absolute Error (MAE) and 2.7% in Root Mean Square Error (RMSE). Code: https://github.com/harborsarah/CaFNet
Related papers
- GET-UP: GEomeTric-aware Depth Estimation with Radar Points UPsampling [7.90238039959534]
Existing algorithms process radar data by projecting 3D points onto the image plane for pixel-level feature extraction.
We propose GET-UP, leveraging attention-enhanced Graph Neural Networks (GNN) to exchange and aggregate both 2D and 3D information from radar data.
We benchmark our proposed GET-UP on the nuScenes dataset, achieving state-of-the-art performance with a 15.3% and 14.7% improvement in MAE and RMSE over the previously best-performing model.
arXiv Detail & Related papers (2024-09-02T14:15:09Z) - Enhanced Radar Perception via Multi-Task Learning: Towards Refined Data for Sensor Fusion Applications [6.237187007098249]
This work introduces a learning-based approach to infer the height of radar points associated with 3D objects.
The average radar absolute height error decreases from 1.69 to 0.25 meters compared to the state-of-the-art height extension method.
arXiv Detail & Related papers (2024-04-09T09:42:18Z) - RIDERS: Radar-Infrared Depth Estimation for Robust Sensing [22.10378524682712]
Adverse weather conditions pose significant challenges to accurate dense depth estimation.
We present a novel approach for robust metric depth estimation by fusing a millimeter-wave Radar and a monocular infrared thermal camera.
Our method achieves exceptional visual quality and accurate metric estimation by addressing the challenges of ambiguity and misalignment.
arXiv Detail & Related papers (2024-02-03T07:14:43Z) - RadarCam-Depth: Radar-Camera Fusion for Depth Estimation with Learned Metric Scale [21.09258172290667]
We present a novel approach for metric dense depth estimation based on the fusion of a single-view image and a sparse, noisy Radar point cloud.
Our proposed method significantly outperforms the state-of-the-art Radar-Camera depth estimation methods by reducing the mean absolute error (MAE) of depth estimation by 25.6% and 40.2% on the challenging nuScenes dataset and our self-collected ZJU-4DRadarCam dataset, respectively.
arXiv Detail & Related papers (2024-01-09T02:40:03Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
Self-supervised monocular depth estimation in driving scenarios has achieved comparable performance to supervised approaches.
We present R4Dyn, a novel set of techniques to use cost-efficient radar data on top of a self-supervised depth estimation framework.
arXiv Detail & Related papers (2021-08-10T17:57:03Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z) - Radar-Camera Sensor Fusion for Joint Object Detection and Distance
Estimation in Autonomous Vehicles [8.797434238081372]
We present a novel radar-camera sensor fusion framework for accurate object detection and distance estimation in autonomous driving scenarios.
The proposed architecture uses a middle-fusion approach to fuse the radar point clouds and RGB images.
Experiments on the challenging nuScenes dataset show our method outperforms other existing radar-camera fusion methods in the 2D object detection task.
arXiv Detail & Related papers (2020-09-17T17:23:40Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.