論文の概要: NourishNet: Proactive Severity State Forecasting of Food Commodity Prices for Global Warning Systems
- arxiv url: http://arxiv.org/abs/2407.00698v1
- Date: Sun, 30 Jun 2024 13:43:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 01:57:25.950978
- Title: NourishNet: Proactive Severity State Forecasting of Food Commodity Prices for Global Warning Systems
- Title(参考訳): NourishNet:温暖化対策のための食品商品価格予測
- Authors: Sydney Balboni, Grace Ivey, Brett Storoe, John Cisler, Tyge Plater, Caitlyn Grant, Ella Bruce, Benjamin Paulson,
- Abstract要約: 世界的な食品商品の価格変動は、食品市場の破壊の可能性を示す重要なシグナルである。
FAOは以前、食品価格の積極的な予測のための洗練された統計フレームワークを開発した。
本研究は,堅牢な価格セキュリティ指標と最先端のディープラーニング(DL)手法を統合することにより,これらの基盤の上に構築されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Price volatility in global food commodities is a critical signal indicating potential disruptions in the food market. Understanding forthcoming changes in these prices is essential for bolstering food security, particularly for nations at risk. The Food and Agriculture Organization of the United Nations (FAO) previously developed sophisticated statistical frameworks for the proactive prediction of food commodity prices, aiding in the creation of global early warning systems. These frameworks utilize food security indicators to produce accurate forecasts, thereby facilitating preparations against potential food shortages. Our research builds on these foundations by integrating robust price security indicators with cutting-edge deep learning (DL) methodologies to reveal complex interdependencies. DL techniques examine intricate dynamics among diverse factors affecting food prices. Through sophisticated time-series forecasting models coupled with a classification model, our approach enhances existing models to better support communities worldwide in advancing their food security initiatives.
- Abstract(参考訳): 世界的な食品商品の価格変動は、食品市場の破壊の可能性を示す重要なシグナルである。
これらの価格の今後の変化を理解することは、特に危険にさらされている国において、食料安全保障の強化に不可欠である。
国連食糧農業機関(FAO)は以前、世界的な早期警戒システムの構築を支援するために、食品価格の積極的な予測のための洗練された統計的枠組みを開発した。
これらの枠組みは、食料安全保障指標を利用して正確な予測を作成し、潜在的な食糧不足に備える準備を容易にする。
我々の研究は、これらの基盤の上に、複雑な相互依存を明らかにするために、堅牢な価格セキュリティ指標と最先端のディープラーニング(DL)方法論を統合することによって構築されている。
DL技術は、食品価格に影響を及ぼす様々な要因の複雑なダイナミクスを調べる。
分類モデルと組み合わされた洗練された時系列予測モデルにより,我々のアプローチは既存のモデルを強化し,地域社会の食料安全保障の推進を支援する。
関連論文リスト
- RoDE: Linear Rectified Mixture of Diverse Experts for Food Large Multi-Modal Models [96.43285670458803]
Uni-Foodは、さまざまな食品ラベルを持つ10万以上の画像からなる統合食品データセットである。
Uni-Foodは、食品データ分析に対するより包括的なアプローチを提供するように設計されている。
本稿では,食品関連マルチタスキングの課題に対処するため,新しいリニア・リクティフィケーション・ミックス・オブ・ディバース・エキスパート (RoDE) アプローチを提案する。
論文 参考訳(メタデータ) (2024-07-17T16:49:34Z) - From Canteen Food to Daily Meals: Generalizing Food Recognition to More
Practical Scenarios [92.58097090916166]
DailyFood-172とDailyFood-16という2つの新しいベンチマークを、毎日の食事から食のイメージをキュレートする。
これらの2つのデータセットは、よく計算された食品画像領域から日常的な食品画像領域へのアプローチの伝達性を評価するために使用される。
論文 参考訳(メタデータ) (2024-03-12T08:32:23Z) - Forecasting Trends in Food Security: a Reservoir Computing Approach [0.8437187555622164]
我々は、マリ、ナイジェリア、シリア、イエメンの4カ国で、60日間連続して食料消費の水準を予測するための新しい定量的方法論を提案する。
この手法は、World Food Programmeのグローバル飢餓監視システムから入手可能なデータに基づいて構築されている。
論文 参考訳(メタデータ) (2023-12-01T14:42:37Z) - Revolutionizing Global Food Security: Empowering Resilience through
Integrated AI Foundation Models and Data-Driven Solutions [8.017557640367938]
本稿では,食品セキュリティアプリケーションにおけるAIファンデーションモデルの統合について検討する。
本研究は, 収穫型マッピング, 耕作地マッピング, フィールドデライン化, 収穫量予測における利用状況について検討した。
論文 参考訳(メタデータ) (2023-10-31T09:15:35Z) - Food Image Classification and Segmentation with Attention-based Multiple
Instance Learning [51.279800092581844]
本稿では,食品画像分類とセマンティックセグメンテーションモデルを訓練するための弱教師付き方法論を提案する。
提案手法は、注意に基づくメカニズムと組み合わせて、複数のインスタンス学習アプローチに基づいている。
提案手法の有効性を検証するため,FoodSeg103データセット内の2つのメタクラスについて実験を行った。
論文 参考訳(メタデータ) (2023-08-22T13:59:47Z) - Revolutionizing Agrifood Systems with Artificial Intelligence: A Survey [93.34268594812599]
我々は、AI技術がアグリフードシステムをどう変え、現代のアグリフード産業に貢献するかをレビューする。
本稿では,農業,畜産,漁業において,アグリフードシステムにおけるAI手法の進歩について概説する。
我々は、AIで現代のアグリフードシステムを変革するための潜在的な課題と有望な研究機会を強調します。
論文 参考訳(メタデータ) (2023-05-03T05:16:54Z) - Goal oriented indicators for food systems based on FAIR data [0.0]
本稿では, ゼロ廃棄物とゼロ排出のビジョンにかんする食品サプライチェーンの枠組みを提案する。
我々は、食品分野における費用対効果のあるユースケースの理由を提供し、価値あるデジタルツインを創出する。
論文 参考訳(メタデータ) (2023-02-20T11:20:44Z) - A Framework for Evaluating the Impact of Food Security Scenarios [0.0]
このケーススタディは、国連食糧農業機関(FAOSTAT)、世界銀行、米国農務省(USDA)のデータを用いて作成された、独自の時系列食品セキュリティデータベースに基づいている。
提案手法は,食品セキュリティにおけるシナリオの潜在的な影響を予測するために,また,この手法をサポートするために,独自の時系列食品セキュリティデータベースを使用することができる。
論文 参考訳(メタデータ) (2023-01-23T08:41:46Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
本総説では, 食品画像分析, 容積推定, 栄養素抽出の3段階からなる, 統合型ビジョンベース食事評価(VBDA)の枠組みを概説する。
深層学習により、VBDAは徐々にエンドツーエンドの実装へと移行し、単一のネットワークに食品画像を適用して栄養を直接見積もる。
論文 参考訳(メタデータ) (2021-08-06T05:46:01Z) - Towards Building a Food Knowledge Graph for Internet of Food [66.57235827087092]
食品分類から食品分類、食品知識グラフまで、食品知識組織の進化を概観する。
食品知識グラフは、食品検索と質問回答(QA)、パーソナライズされた食事レコメンデーション、食品分析、可視化において重要な役割を果たす。
食品知識グラフの今後の方向性は、マルチモーダル食品知識グラフや食品インテリジェンスなど、いくつかの分野をカバーする。
論文 参考訳(メタデータ) (2021-07-13T06:26:53Z) - Food safety risk prediction with Deep Learning models using categorical
embeddings on European Union data [1.4502611532302039]
欧州連合(EU)は1977年に、国境を越えた監視を確保するため、取引された商品に関する不規則事項を登録し始めた。
食品問題に関連するデータは、将来の通知のいくつかの機能を予測するために、機械学習技術によって取り除かれ分析された。
その結果,74.08%から93.06%の精度でこれらの特徴を予測できることがわかった。
論文 参考訳(メタデータ) (2020-09-14T19:36:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。