論文の概要: A monthly sub-national Harmonized Food Insecurity Dataset for comprehensive analysis and predictive modeling
- arxiv url: http://arxiv.org/abs/2501.06076v2
- Date: Mon, 13 Jan 2025 10:42:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:23:12.032935
- Title: A monthly sub-national Harmonized Food Insecurity Dataset for comprehensive analysis and predictive modeling
- Title(参考訳): 包括的分析と予測モデリングのための月次準国家ハーモナイズドフードインセキュリティデータセット
- Authors: Mélissande Machefer, Michele Ronco, Anne-Claire Thomas, Michael Assouline, Melanie Rabier, Christina Corbane, Felix Rembold,
- Abstract要約: 本稿では,4つの主要なデータソースを統合するオープンソースリソースであるHFID(Harmonized Food Insecurity dataset)を紹介する。
HFIDは食品安全保障の専門家や人道機関にとって重要なツールであり、食料安全保障状況を分析するための統一された資源を提供する。
科学コミュニティはまた、HFIDを利用してデータ駆動予測モデルを開発することができ、将来の食糧危機の予測と予防の能力を高めることができる。
- 参考スコア(独自算出の注目度): 0.11292693568898363
- License:
- Abstract: Food security is a complex, multidimensional concept challenging to measure comprehensively. Effective anticipation, monitoring, and mitigation of food crises require timely and comprehensive global data. This paper introduces the Harmonized Food Insecurity Dataset (HFID), an open-source resource consolidating four key data sources: the Integrated Food Security Phase Classification (IPC)/Cadre Harmonis\'e (CH) phases, the Famine Early Warning Systems Network (FEWS NET) IPC-compatible phases, and the World Food Program's (WFP) Food Consumption Score (FCS) and reduced Coping Strategy Index (rCSI). Updated monthly and using a common reference system for administrative units, the HFID offers extensive spatial and temporal coverage. It serves as a vital tool for food security experts and humanitarian agencies, providing a unified resource for analyzing food security conditions and highlighting global data disparities. The scientific community can also leverage the HFID to develop data-driven predictive models, enhancing the capacity to forecast and prevent future food crises.
- Abstract(参考訳): 食品の安全性は、包括的に測定することが難しい複雑で多次元的な概念である。
食糧危機の効果的な予測、監視、緩和には、タイムリーで包括的なグローバルデータが必要である。
本稿では、統合食品安全相分類(IPC)/Cadre Harmonis\'e(CH)フェーズ、Famine Early Warning Systems Network(FEWSNET)フェーズ、World Food Program's(WFP)フード消費スコア(FCS)およびReduce Coping Strategy Index(rCSI)フェーズの4つの主要なデータソースを統合したオープンソースのリソースであるHarmonized Food Insecurity Dataset(HFID)を紹介する。
毎月更新され、管理単位の共通参照システムを使用して、HFIDは広範囲の空間的および時間的カバレッジを提供する。
食品安全保障の専門家や人道機関にとって重要なツールであり、食料安全保障状況を分析し、グローバルなデータ格差を強調するための統一された資源を提供する。
科学コミュニティはまた、HFIDを利用してデータ駆動予測モデルを開発することができ、将来の食糧危機の予測と予防の能力を高めることができる。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - MetaFood3D: 3D Food Dataset with Nutrition Values [52.16894900096017]
このデータセットは、131のカテゴリにまたがって、743の精細にスキャンされ、ラベル付けされた3D食品オブジェクトで構成されている。
我々のMetaFood3Dデータセットはクラス内の多様性を重視しており、テクスチャメッシュファイル、RGB-Dビデオ、セグメンテーションマスクなどのリッチなモダリティを含んでいる。
論文 参考訳(メタデータ) (2024-09-03T15:02:52Z) - RoDE: Linear Rectified Mixture of Diverse Experts for Food Large Multi-Modal Models [96.43285670458803]
Uni-Foodは、さまざまな食品ラベルを持つ10万以上の画像からなる統合食品データセットである。
Uni-Foodは、食品データ分析に対するより包括的なアプローチを提供するように設計されている。
本稿では,食品関連マルチタスキングの課題に対処するため,新しいリニア・リクティフィケーション・ミックス・オブ・ディバース・エキスパート (RoDE) アプローチを提案する。
論文 参考訳(メタデータ) (2024-07-17T16:49:34Z) - NourishNet: Proactive Severity State Forecasting of Food Commodity Prices for Global Warning Systems [0.0]
世界的な食品商品の価格変動は、食品市場の破壊の可能性を示す重要なシグナルである。
FAOは以前、食品価格の積極的な予測のための洗練された統計フレームワークを開発した。
本研究は,堅牢な価格セキュリティ指標と最先端のディープラーニング(DL)手法を統合することにより,これらの基盤の上に構築されている。
論文 参考訳(メタデータ) (2024-06-30T13:43:26Z) - Forecasting trends in food security with real time data [0.0]
我々は,マリ,ナイジェリア,シリア,イエメンの4カ国で,60日間連続して食料消費の水準を予測する定量的手法を提案する。
この手法は、World Food Programmeのグローバルな飢餓モニタリングシステムから入手可能なデータに基づいて構築されている。
論文 参考訳(メタデータ) (2023-12-01T14:42:37Z) - Revolutionizing Global Food Security: Empowering Resilience through
Integrated AI Foundation Models and Data-Driven Solutions [8.017557640367938]
本稿では,食品セキュリティアプリケーションにおけるAIファンデーションモデルの統合について検討する。
本研究は, 収穫型マッピング, 耕作地マッピング, フィールドデライン化, 収穫量予測における利用状況について検討した。
論文 参考訳(メタデータ) (2023-10-31T09:15:35Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
本総説では, 食品画像分析, 容積推定, 栄養素抽出の3段階からなる, 統合型ビジョンベース食事評価(VBDA)の枠組みを概説する。
深層学習により、VBDAは徐々にエンドツーエンドの実装へと移行し、単一のネットワークに食品画像を適用して栄養を直接見積もる。
論文 参考訳(メタデータ) (2021-08-06T05:46:01Z) - Towards Building a Food Knowledge Graph for Internet of Food [66.57235827087092]
食品分類から食品分類、食品知識グラフまで、食品知識組織の進化を概観する。
食品知識グラフは、食品検索と質問回答(QA)、パーソナライズされた食事レコメンデーション、食品分析、可視化において重要な役割を果たす。
食品知識グラフの今後の方向性は、マルチモーダル食品知識グラフや食品インテリジェンスなど、いくつかの分野をカバーする。
論文 参考訳(メタデータ) (2021-07-13T06:26:53Z) - AI-enabled Efficient and Safe Food Supply Chain [0.0]
機械と深層学習の最近の進歩は、効率的な食品生産、エネルギー管理、食品ラベル付けに利用されている。
3つの実験研究が行われ、これらのAI手法が食品サプライチェーン全体で最先端のパフォーマンスを生み出す能力を示しています。
論文 参考訳(メタデータ) (2021-05-01T19:24:53Z) - ISIA Food-500: A Dataset for Large-Scale Food Recognition via Stacked
Global-Local Attention Network [50.7720194859196]
ウィキペディアのリストから500のカテゴリと399,726の画像を含むデータセットISIA Food-500を紹介する。
このデータセットは、既存の一般的なベンチマークデータセットをカテゴリカバレッジとデータボリュームで上回る。
食品認識のための2つのサブネットワークからなるグローバルローカルアテンションネットワークを提案する。
論文 参考訳(メタデータ) (2020-08-13T02:48:27Z) - Cost of Dietary Data Acquisition with Smart Group Catering [4.511923587827301]
食事データ管理の必要性は、食事摂取に対する認識が高まりつつある。
どちらの場合も人的労働が関与するため、データ品質には人的力の割り当てが不可欠である。
本稿では,食生活データの品質と投資マンパワーの関係について検討した。
論文 参考訳(メタデータ) (2020-01-02T09:25:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。