論文の概要: Posterior Sampling with Denoising Oracles via Tilted Transport
- arxiv url: http://arxiv.org/abs/2407.00745v1
- Date: Sun, 30 Jun 2024 16:11:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 01:47:18.194604
- Title: Posterior Sampling with Denoising Oracles via Tilted Transport
- Title(参考訳): ティルトトランスポートによるOracleのデノベートによる後方サンプリング
- Authors: Joan Bruna, Jiequn Han,
- Abstract要約: 本稿では, 線形逆問題における対数様の二次構造を利用したテクスタイテッドトランスポート手法を提案する。
我々は、この後続が強く対数凹である条件を定量化し、測定行列の条件数に依存することを強調する。
得られた後続サンプリングスキームは,Isingモデルをサンプリングするために予測された計算しきい値に達することが示されている。
- 参考スコア(独自算出の注目度): 37.14320147233444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Score-based diffusion models have significantly advanced high-dimensional data generation across various domains, by learning a denoising oracle (or score) from datasets. From a Bayesian perspective, they offer a realistic modeling of data priors and facilitate solving inverse problems through posterior sampling. Although many heuristic methods have been developed recently for this purpose, they lack the quantitative guarantees needed in many scientific applications. In this work, we introduce the \textit{tilted transport} technique, which leverages the quadratic structure of the log-likelihood in linear inverse problems in combination with the prior denoising oracle to transform the original posterior sampling problem into a new `boosted' posterior that is provably easier to sample from. We quantify the conditions under which this boosted posterior is strongly log-concave, highlighting the dependencies on the condition number of the measurement matrix and the signal-to-noise ratio. The resulting posterior sampling scheme is shown to reach the computational threshold predicted for sampling Ising models [Kunisky'23] with a direct analysis, and is further validated on high-dimensional Gaussian mixture models and scalar field $\varphi^4$ models.
- Abstract(参考訳): スコアベース拡散モデルでは、データセットからオラクル(あるいはスコア)を学習することで、さまざまな領域にわたる高度な高次元データ生成を行うことができる。
ベイズの観点からは、それらはデータ先行の現実的なモデリングを提供し、後続サンプリングによる逆問題の解決を容易にする。
近年、この目的のために多くのヒューリスティックな手法が開発されているが、多くの科学的応用で必要とされる量的保証は欠如している。
そこで本研究では,従来の復号化オラクルと組み合わせた線形逆数問題における対数様の二次構造を利用して,元の後部サンプリング問題を標本化し易い新しい"boosted"後部への変換を行う,‘textit{tilted transport} 技術を導入する。
我々は,この後続後続が強い対数凹である条件を定量化し,測定行列の条件数と信号対雑音比に依存することを強調した。
得られた後続サンプリングスキームは,Isingモデル[Kunisky'23]を直接解析し,高次元ガウス混合モデルとスカラー場$\varphi^4$モデルでさらに検証することにより,Isingモデル[Kunisky'23]をサンプリングするために予測される計算しきい値に達することを示した。
関連論文リスト
- Enhancing Diffusion Posterior Sampling for Inverse Problems by Integrating Crafted Measurements [45.70011319850862]
拡散モデルは視覚生成のための強力な基礎モデルとして登場してきた。
現在の後方サンプリングに基づく手法では、測定結果を後方サンプリングに取り込み、対象データの分布を推定する。
本研究は, 早期に高周波情報を早期に導入し, より大きい推定誤差を生じさせることを示す。
工芸品計測を取り入れた新しい拡散後サンプリング手法DPS-CMを提案する。
論文 参考訳(メタデータ) (2024-11-15T00:06:57Z) - Posterior sampling via Langevin dynamics based on generative priors [31.84543941736757]
生成モデルを用いた高次元空間における後方サンプリングは、様々な応用に有望である。
既存の手法では、新しいサンプルごとに生成プロセス全体を再起動する必要があるため、計算コストがかかる。
事前学習した生成モデルの雑音空間におけるランゲヴィンダイナミクスをシミュレーションし,効率的な後部サンプリングを提案する。
論文 参考訳(メタデータ) (2024-10-02T22:57:47Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Divide-and-Conquer Posterior Sampling for Denoising Diffusion Priors [21.0128625037708]
提案手法は, 分割・分散型後方サンプリング方式である。
これにより、再トレーニングを必要とせずに、現在のテクニックに関連する近似誤差を低減することができる。
ベイズ逆問題に対するアプローチの汎用性と有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T01:47:24Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
本稿では,事前学習した潜在拡散モデルを利用した線形逆問題の解法を初めて提案する。
線形モデル設定において,証明可能なサンプル回復を示すアルゴリズムを理論的に解析する。
論文 参考訳(メタデータ) (2023-07-02T17:21:30Z) - Refining Amortized Posterior Approximations using Gradient-Based Summary
Statistics [0.9176056742068814]
逆問題の文脈における後部分布の補正近似を改善するための反復的枠組みを提案する。
そこで我々は,本手法をスタイリング問題に適用して制御条件で検証し,改良された後部近似を各繰り返しで観察する。
論文 参考訳(メタデータ) (2023-05-15T15:47:19Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Posterior samples of source galaxies in strong gravitational lenses with
score-based priors [107.52670032376555]
我々はスコアベースモデルを用いて、背景銀河の歪みのない画像の事前推定を符号化する。
アウト・オブ・ディストリビューション・データを用いた実験において、可能性と事前のバランスが、我々の期待にどのように合致しているかを示す。
論文 参考訳(メタデータ) (2022-11-07T19:00:42Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
我々は、後方サンプリングの近似により、雑音(非線形)逆問題に対処するために拡散解法を拡張した。
本手法は,拡散モデルが様々な計測ノイズ統計を組み込むことができることを示す。
論文 参考訳(メタデータ) (2022-09-29T11:12:27Z) - Sampling Approximately Low-Rank Ising Models: MCMC meets Variational
Methods [35.24886589614034]
一般相互作用が$J$である超キューブ上の二次定値イジングモデルを考える。
我々の一般的な結果は、低ランクのIsingモデルに対する最初のサンプリングアルゴリズムを示唆している。
論文 参考訳(メタデータ) (2022-02-17T21:43:50Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。