Analysis of Modern Computer Vision Models for Blood Cell Classification
- URL: http://arxiv.org/abs/2407.00759v1
- Date: Sun, 30 Jun 2024 16:49:29 GMT
- Title: Analysis of Modern Computer Vision Models for Blood Cell Classification
- Authors: Alexander Kim, Ryan Kim,
- Abstract summary: This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accurate classification of white blood cells and related blood components is crucial for medical diagnoses. While traditional manual examinations and automated hematology analyzers have been widely used, they are often slow and prone to errors. Recent advancements in deep learning have shown promise for addressing these limitations. Earlier studies have demonstrated the viability of convolutional neural networks such as DenseNet, ResNet, and VGGNet for this task. Building on these foundations, our work employs more recent and efficient models to achieve rapid and accurate results. Specifically, this study used state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3. This study aimed to evaluate the performance of these models in WBC classification, potentially offering a more efficient and reliable alternative to current methods. Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
Related papers
- A study on deep feature extraction to detect and classify Acute Lymphoblastic Leukemia (ALL) [0.0]
Acute lymphoblastic leukaemia (ALL) is a blood malignancy that mainly affects adults and children.
This study looks into the use of deep learning, specifically Convolutional Neural Networks (CNNs) for the detection and classification of ALL.
With an 87% accuracy rate, the ResNet101 model produced the best results, closely followed by DenseNet121 and VGG19.
arXiv Detail & Related papers (2024-09-10T17:53:29Z) - Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer
Learning Method [0.0]
This research paper focuses on Acute Lymphoblastic Leukemia (ALL), a form of blood cancer prevalent in children and teenagers.
It proposes an automated detection approach using computer-aided diagnostic (CAD) models, leveraging deep learning techniques.
The proposed method achieved an impressive 98.38% accuracy, outperforming other tested models.
arXiv Detail & Related papers (2023-12-01T10:37:02Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration [66.22668336495175]
A lack of consideration for neural network calibration will not gain trust from humans.
We introduce the Neural Clamping Toolkit, the first open-source framework designed to help developers employ state-of-the-art model-agnostic calibrated models.
arXiv Detail & Related papers (2022-11-29T15:03:05Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Pathological Analysis of Blood Cells Using Deep Learning Techniques [0.0]
A neural based network has been proposed for classification of blood cells images into various categories.
The performance of proposed model is better than existing standard architectures and work done by various researchers.
arXiv Detail & Related papers (2021-11-05T05:37:10Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Analysis of Vision-based Abnormal Red Blood Cell Classification [1.6050172226234583]
Identification of abnormalities in red blood cells (RBC) is key to diagnosing a range of medical conditions from anaemia to liver disease.
This paper presents an automated process utilising the advantages of machine learning to increase capacity and standardisation of cell abnormality detection.
arXiv Detail & Related papers (2021-06-01T10:52:41Z) - Learning Efficient, Explainable and Discriminative Representations for
Pulmonary Nodules Classification [2.4565395352560895]
In this work, we aim to build an efficient and (partially) explainable classification model.
We use emphneural architecture search (NAS) to automatically search 3D network architectures with excellent accuracy/speed trade-off.
In the inference stage, we employ an ensemble of diverse neural networks to improve the prediction accuracy and robustness.
arXiv Detail & Related papers (2021-01-19T02:53:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.