Analysis of Vision-based Abnormal Red Blood Cell Classification
- URL: http://arxiv.org/abs/2106.00389v1
- Date: Tue, 1 Jun 2021 10:52:41 GMT
- Title: Analysis of Vision-based Abnormal Red Blood Cell Classification
- Authors: Annika Wong and Nantheera Anantrasirichai and Thanarat H.
Chalidabhongse and Duangdao Palasuwan and Attakorn Palasuwan and David Bull
- Abstract summary: Identification of abnormalities in red blood cells (RBC) is key to diagnosing a range of medical conditions from anaemia to liver disease.
This paper presents an automated process utilising the advantages of machine learning to increase capacity and standardisation of cell abnormality detection.
- Score: 1.6050172226234583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identification of abnormalities in red blood cells (RBC) is key to diagnosing
a range of medical conditions from anaemia to liver disease. Currently this is
done manually, a time-consuming and subjective process. This paper presents an
automated process utilising the advantages of machine learning to increase
capacity and standardisation of cell abnormality detection, and its performance
is analysed. Three different machine learning technologies were used: a Support
Vector Machine (SVM), a classical machine learning technology; TabNet, a deep
learning architecture for tabular data; U-Net, a semantic segmentation network
designed for medical image segmentation. A critical issue was the highly
imbalanced nature of the dataset which impacts the efficacy of machine
learning. To address this, synthesising minority class samples in feature space
was investigated via Synthetic Minority Over-sampling Technique (SMOTE) and
cost-sensitive learning. A combination of these two methods is investigated to
improve the overall performance. These strategies were found to increase
sensitivity to minority classes. The impact of unknown cells on semantic
segmentation is demonstrated, with some evidence of the model applying learning
of labelled cells to these anonymous cells. These findings indicate both
classical models and new deep learning networks as promising methods in
automating RBC abnormality detection.
Related papers
- Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
This study uses state-of-the-art architectures, including MaxVit, EfficientVit, EfficientNet, EfficientNetV2, and MobileNetV3 to achieve rapid and accurate results.
Our approach not only addresses the speed and accuracy concerns of traditional techniques but also explores the applicability of innovative deep learning models in hematological analysis.
arXiv Detail & Related papers (2024-06-30T16:49:29Z) - Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
We introduce a novel approach for white blood cell classification based on neural cellular automata (NCA)
Our NCA-based method is significantly smaller in terms of parameters and exhibits robustness to domain shifts.
Our results demonstrate that NCA can be used for image classification, and they address key challenges of conventional methods.
arXiv Detail & Related papers (2024-04-08T14:59:53Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis [58.720142291102135]
The aim of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from speech signal.
The use of information about outlier and Fractal Dimension features improves the system performance.
arXiv Detail & Related papers (2022-03-21T09:57:20Z) - Machine learning based lens-free imaging technique for field-portable
cytometry [0.0]
The performance of our proposed method shows an increase in accuracy >98% along with the signal enhancement of >5 dB for most of the cell types.
The model is adaptive to learn new type of samples within a few learning iterations and able to successfully classify the newly introduced sample.
arXiv Detail & Related papers (2022-03-02T07:09:29Z) - Classification of White Blood Cell Leukemia with Low Number of
Interpretable and Explainable Features [0.0]
White Blood Cell (WBC) Leukaemia is detected through image-based classification.
Convolutional Neural Networks are used to learn the features needed to classify images of cells a malignant or healthy.
This type of model requires learning a large number of parameters and is difficult to interpret and explain.
We present an XAI model which uses only 24 explainable and interpretable features and is highly competitive to other approaches by outperforming them by about 4.38%.
arXiv Detail & Related papers (2022-01-28T00:08:56Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
We benchmark 27 popular deep convolutional neural network architectures on the microscopic peripheral blood cell images dataset.
We fine-tune the state-of-the-art image classification models pre-trained on the ImageNet dataset for blood cell classification.
arXiv Detail & Related papers (2021-10-18T17:56:07Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Cells are Actors: Social Network Analysis with Classical ML for SOTA
Histology Image Classification [1.4806818833792859]
We propose to use a statistical network analysis method to describe the complex structure of the tissue micro-environment.
We show that by analysing only the interactions between the cells in a network, we can extract highly discriminative statistical features for CRA grading.
We create cell networks on a broad CRC histology image dataset, experiment with our method, and report state-of-the-art performance for the prediction of three-class CRA grading.
arXiv Detail & Related papers (2021-06-29T12:22:10Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.