Distributed Quantum Computing across an Optical Network Link
- URL: http://arxiv.org/abs/2407.00835v1
- Date: Sun, 30 Jun 2024 21:32:10 GMT
- Title: Distributed Quantum Computing across an Optical Network Link
- Authors: D. Main, P. Drmota, D. P. Nadlinger, E. M. Ainley, A. Agrawal, B. C. Nichol, R. Srinivas, G. Araneda, D. M. Lucas,
- Abstract summary: We experimentally demonstrate the distribution of quantum computations between two photonically interconnected trapped-ion modules.
We deterministically teleport a controlled-Z gate between two circuit qubits in separate modules, achieving 86% fidelity.
As photons can be interfaced with a variety of systems, this technique has applications extending beyond trapped-ion quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed quantum computing (DQC) combines the computing power of multiple networked quantum processing modules, enabling the execution of large quantum circuits without compromising on performance and connectivity. Photonic networks are well-suited as a versatile and reconfigurable interconnect layer for DQC; remote entanglement shared between matter qubits across the network enables all-to-all logical connectivity via quantum gate teleportation (QGT). For a scalable DQC architecture, the QGT implementation must be deterministic and repeatable; until now, there has been no demonstration satisfying these requirements. We experimentally demonstrate the distribution of quantum computations between two photonically interconnected trapped-ion modules. The modules are separated by $\sim$ 2 m, and each contains dedicated network and circuit qubits. By using heralded remote entanglement between the network qubits, we deterministically teleport a controlled-Z gate between two circuit qubits in separate modules, achieving 86% fidelity. We then execute Grover's search algorithm - the first implementation of a distributed quantum algorithm comprising multiple non-local two-qubit gates - and measure a 71% success rate. Furthermore, we implement distributed iSWAP and SWAP circuits, compiled with 2 and 3 instances of QGT, respectively, demonstrating the ability to distribute arbitrary two-qubit operations. As photons can be interfaced with a variety of systems, this technique has applications extending beyond trapped-ion quantum computers, providing a viable pathway towards large-scale quantum computing for a range of physical platforms.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Applying an Evolutionary Algorithm to Minimize Teleportation Costs in Distributed Quantum Computing [3.0846297887400977]
A quantum communication network can be formed by connecting multiple quantum computers (QCs) through classical and quantum channels.
In distributed quantum computing, QCs collectively perform a quantum computation.
In this paper, we propose an evolutionary algorithm for this problem.
arXiv Detail & Related papers (2023-11-30T13:10:28Z) - A Modular Quantum Compilation Framework for Distributed Quantum
Computing [0.0]
Distributed Quantum Computing is a scalable approach for increasing the number of available qubits for computational tasks.
We present a modular quantum compilation framework for DQC that takes into account both network and device constraints.
We also devised a strategy for remote scheduling that can exploit both TeleGate and TeleData operations.
arXiv Detail & Related papers (2023-05-04T16:13:23Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Distribution of Quantum Circuits Over General Quantum Networks [3.7344608362649505]
Near-term quantum computers can hold only a small number of qubits.
One way to facilitate large-scale quantum computations is through a distributed network of quantum computers.
We consider the problem of distributing quantum programs across a quantum network of heterogeneous quantum computers.
arXiv Detail & Related papers (2022-06-13T19:30:48Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - Computation-aided classical-quantum multiple access to boost network
communication speeds [61.12008553173672]
We quantify achievable quantum communication rates of codes with computation property for a two-sender cq-MAC.
We show that it achieves the maximum possible communication rate (the single-user capacity), which cannot be achieved with conventional design.
arXiv Detail & Related papers (2021-05-30T11:19:47Z) - A Quantum-Logic Gate between Distant Quantum-Network Modules [2.810625954925815]
Quantum networks promise a solution by integrating smaller qubit modules to a larger computing cluster.
Here we experimentally realize such a gate over a distance of 60m.
Our non-local quantum-logic gate could be extended both to multiple qubits and many modules for a tailor-made multi-qubit computing register.
arXiv Detail & Related papers (2021-03-24T11:13:44Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.