Universal distributed blind quantum computing with solid-state qubits
- URL: http://arxiv.org/abs/2412.03020v2
- Date: Mon, 09 Dec 2024 07:15:14 GMT
- Title: Universal distributed blind quantum computing with solid-state qubits
- Authors: Yan-Cheng Wei, Pieter-Jan Stas, Aziza Suleymanzade, Gefen Baranes, Francisco Machado, Yan Qi Huan, Can M. Knaut, Weiyi Sophie Ding, Moritz Merz, Erik N Knall, Umut Yazlar, Maxim Sirotin, Iria W. Wang, Bart Machielse, Susanne F. Yelin, Johannes Borregaard, Hongkun Park, Marko Loncar, Mikhail D. Lukin,
- Abstract summary: Blind quantum computing is a promising application of distributed quantum systems.
We experimentally demonstrate a universal quantum gate set consisting of single- and two-qubit blind gates over a distributed two-node network.
We perform a distributed algorithm with blind operations across our two-node network, paving the way towards blind quantum computation with matter qubits in distributed, modular architectures.
- Score: 0.0
- License:
- Abstract: Blind quantum computing (BQC) is a promising application of distributed quantum systems, where a client can perform computations on a remote server without revealing any details of the applied circuit. While the most promising realizations of quantum computers are based on various matter qubit platforms, implementing BQC on matter qubits remains an outstanding challenge. Using silicon-vacancy (SiV) centers in nanophotonic diamond cavities with an efficient optical interface, we experimentally demonstrate a universal quantum gate set consisting of single- and two-qubit blind gates over a distributed two-node network. Using these ingredients, we perform a distributed algorithm with blind operations across our two-node network, paving the way towards blind quantum computation with matter qubits in distributed, modular architectures.
Related papers
- Conveyor-belt superconducting quantum computer [0.46603287532620735]
We present a novel quantum processing unit (QPU) for a universal quantum computer which is globally (rather than locally) driven.
Our QPU relies on a string of superconducting qubits with always-on ZZ interactions, enclosed into a closed geometry.
The ability to perform multi-qubit operations in a single step could vastly improve the fidelity and execution time of many algorithms.
arXiv Detail & Related papers (2024-12-16T13:51:28Z) - Distributed Quantum Computing across an Optical Network Link [0.0]
We experimentally demonstrate the distribution of quantum computations between two photonically interconnected trapped-ion modules.
We deterministically teleport a controlled-Z gate between two circuit qubits in separate modules, achieving 86% fidelity.
As photons can be interfaced with a variety of systems, this technique has applications extending beyond trapped-ion quantum computers.
arXiv Detail & Related papers (2024-06-30T21:32:10Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Distribution of Quantum Circuits Over General Quantum Networks [3.7344608362649505]
Near-term quantum computers can hold only a small number of qubits.
One way to facilitate large-scale quantum computations is through a distributed network of quantum computers.
We consider the problem of distributing quantum programs across a quantum network of heterogeneous quantum computers.
arXiv Detail & Related papers (2022-06-13T19:30:48Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
We introduce a trainable quantum tensor network (QTN) for quantum embedding on a variational quantum circuit (VQC)
QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the generation of quantum embedding to the output measurement.
Our experiments on the MNIST dataset demonstrate the advantages of QTN for quantum embedding over other quantum embedding approaches.
arXiv Detail & Related papers (2021-10-06T14:44:51Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - A Quantum Network Node with Crossed Optical Fibre Cavities [0.0]
We develop a quantum network node that connects to two quantum channels.
It functions as a passive, heralded and high-fidelity quantum memory.
Our node is robust, fits naturally into larger fibre-based networks, can be scaled to more cavities, and thus provides clear perspectives for a quantum internet.
arXiv Detail & Related papers (2020-04-19T12:17:17Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
We show how a random network of quantum nodes can be used as a robust hardware for quantum computing.
Our network architecture induces quantum operations by optimising only a single layer of quantum nodes.
In the few-qubit regime, sequences of multiple quantum gates in quantum circuits can be compressed with a single operation.
arXiv Detail & Related papers (2020-03-21T03:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.