Channel Modeling Aided Dataset Generation for AI-Enabled CSI Feedback: Advances, Challenges, and Solutions
- URL: http://arxiv.org/abs/2407.00896v1
- Date: Mon, 1 Jul 2024 01:37:30 GMT
- Title: Channel Modeling Aided Dataset Generation for AI-Enabled CSI Feedback: Advances, Challenges, and Solutions
- Authors: Yupeng Li, Gang Li, Zirui Wen, Shuangfeng Han, Shijian Gao, Guangyi Liu, Jiangzhou Wang,
- Abstract summary: The AI-enabled autoencoder has demonstrated great potential in channel state information (CSI) feedback in frequency division duplex (FDD) multiple input multiple output (MIMO) systems.
This paper proposes a channel modeling aided data augmentation method based on a limited number of field channel data.
- Score: 31.112522142930125
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The AI-enabled autoencoder has demonstrated great potential in channel state information (CSI) feedback in frequency division duplex (FDD) multiple input multiple output (MIMO) systems. However, this method completely changes the existing feedback strategies, making it impractical to deploy in recent years. To address this issue, this paper proposes a channel modeling aided data augmentation method based on a limited number of field channel data. Specifically, the user equipment (UE) extracts the primary stochastic parameters of the field channel data and transmits them to the base station (BS). The BS then updates the typical TR 38.901 model parameters with the extracted parameters. In this way, the updated channel model is used to generate the dataset. This strategy comprehensively considers the dataset collection, model generalization, model monitoring, and so on. Simulations verify that our proposed strategy can significantly improve performance compared to the benchmarks.
Related papers
- Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior.
We revisit SR from a novel information-theoretic perspective and find that sequential modeling methods fail to adequately capture randomness and unpredictability of user behavior.
Inspired by fuzzy information processing theory, this paper introduces the fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests.
arXiv Detail & Related papers (2024-10-31T14:52:01Z) - Scalable Transformer for High Dimensional Multivariate Time Series Forecasting [10.17270031004674]
This study investigates the reasons behind the suboptimal performance of channel-dependent models on high-dimensional MTS data.
We propose STHD, the Scalable Transformer for High-Dimensional Multidimensional Time Series Forecasting.
Experiments show STHD's considerable improvement on three high-dimensional datasets: Crime-Chicago, Wiki-People, and Traffic.
arXiv Detail & Related papers (2024-08-08T06:17:13Z) - Cross-modal Prompts: Adapting Large Pre-trained Models for Audio-Visual
Downstream Tasks [55.36987468073152]
This paper proposes a novel Dual-Guided Spatial-Channel-Temporal (DG-SCT) attention mechanism.
The DG-SCT module incorporates trainable cross-modal interaction layers into pre-trained audio-visual encoders.
Our proposed model achieves state-of-the-art results across multiple downstream tasks, including AVE, AVVP, AVS, and AVQA.
arXiv Detail & Related papers (2023-11-09T05:24:20Z) - A Federated Channel Modeling System using Generative Neural Networks [8.424767096311928]
The paper proposes a data-driven approach to air-to-ground channel estimation in a millimeter-wave wireless network on an unmanned aerial vehicle.
We use Federated Learning (FL) for channel estimation and can predict the air-to-ground path loss between a low-altitude platform and a terrestrial terminal.
To evaluate the effectiveness of the proposed model, we evaluate its performance using Kullback-Leibler divergence (KL), and Wasserstein distance between the synthetic data distribution generated by the model and the actual data distribution.
arXiv Detail & Related papers (2023-05-30T08:50:22Z) - CSI Clustering with Variational Autoencoding [11.79281329070709]
We propose to use a variational autoencoder to group unlabeled channel state information with respect to the model order in an unsupervised manner.
Our results suggest that, in order to learn an appropriate clustering, it is crucial to use a more flexible likelihood model for the variational autoencoder decoder.
arXiv Detail & Related papers (2021-11-18T15:38:54Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - PRVNet: A Novel Partially-Regularized Variational Autoencoders for
Massive MIMO CSI Feedback [15.972209500908642]
In a multiple-input multiple-output frequency-division duplexing (MIMO-FDD) system, the user equipment (UE) sends the downlink channel state information (CSI) to the base station to report link status.
In this paper, we introduce PRVNet, a neural network architecture inspired by variational autoencoders (VAE) to compress the CSI matrix before sending it back to the base station.
arXiv Detail & Related papers (2020-11-09T04:07:45Z) - Exposing Shallow Heuristics of Relation Extraction Models with Challenge
Data [49.378860065474875]
We identify failure modes of SOTA relation extraction (RE) models trained on TACRED.
By adding some of the challenge data as training examples, the performance of the model improves.
arXiv Detail & Related papers (2020-10-07T21:17:25Z) - Recent Developments Combining Ensemble Smoother and Deep Generative
Networks for Facies History Matching [58.720142291102135]
This research project focuses on the use of autoencoders networks to construct a continuous parameterization for facies models.
We benchmark seven different formulations, including VAE, generative adversarial network (GAN), Wasserstein GAN, variational auto-encoding GAN, principal component analysis (PCA) with cycle GAN, PCA with transfer style network and VAE with style loss.
arXiv Detail & Related papers (2020-05-08T21:32:42Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.