論文の概要: ProductAgent: Benchmarking Conversational Product Search Agent with Asking Clarification Questions
- arxiv url: http://arxiv.org/abs/2407.00942v1
- Date: Mon, 1 Jul 2024 03:50:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 00:46:07.712246
- Title: ProductAgent: Benchmarking Conversational Product Search Agent with Asking Clarification Questions
- Title(参考訳): ProductAgent: 明確化を問う対話型製品検索エージェントのベンチマーク
- Authors: Jingheng Ye, Yong Jiang, Xiaobin Wang, Yinghui Li, Yangning Li, Hai-Tao Zheng, Pengjun Xie, Fei Huang,
- Abstract要約: ProductAgentは,戦略的明確化質問生成機能と動的製品検索機能を備えた対話情報探索エージェントである。
我々は,製品特徴の要約,クエリ生成,製品検索のための戦略を持ったエージェントを開発する。
実験の結果,ProductAgentはユーザとポジティブに対話し,対話のターンの増加に伴う検索性能の向上を図っている。
- 参考スコア(独自算出の注目度): 68.81939215223818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the task of product demand clarification within an e-commercial scenario, where the user commences the conversation with ambiguous queries and the task-oriented agent is designed to achieve more accurate and tailored product searching by asking clarification questions. To address this task, we propose ProductAgent, a conversational information seeking agent equipped with abilities of strategic clarification question generation and dynamic product retrieval. Specifically, we develop the agent with strategies for product feature summarization, query generation, and product retrieval. Furthermore, we propose the benchmark called PROCLARE to evaluate the agent's performance both automatically and qualitatively with the aid of a LLM-driven user simulator. Experiments show that ProductAgent interacts positively with the user and enhances retrieval performance with increasing dialogue turns, where user demands become gradually more explicit and detailed. All the source codes will be released after the review anonymity period.
- Abstract(参考訳): 本稿では、ユーザがあいまいな問合せで会話を開始し、タスク指向エージェントは、明確化質問をすることで、より正確でカスタマイズされた製品検索を実現するよう設計されている、e-commercial シナリオにおける製品需要明確化のタスクを紹介する。
この課題に対処するために,戦略的明確化質問生成機能と動的製品検索機能を備えた対話情報探索エージェントProductAgentを提案する。
具体的には、製品特徴の要約、クエリ生成、製品検索のための戦略を持つエージェントを開発する。
さらに,PLM駆動型ユーザシミュレータの助けを借りて,エージェントの性能を自動的かつ定性的に評価するproCLAREというベンチマークを提案する。
実験の結果,ProductAgentはユーザとポジティブに対話し,ユーザの要求が徐々に明確化され,詳細化され,対話のターンが増加することにより検索性能が向上することがわかった。
すべてのソースコードは、レビューの匿名期間後にリリースされる。
関連論文リスト
- Learning to Ask: Conversational Product Search via Representation Learning [34.689904564411506]
本研究では,対話型商品検索モデルであるConvPSを提案する。
このモデルはまず、ユーザ、クエリ、アイテム、会話のセマンティック表現を共同で学習するように訓練されている。
提案したConvPSモデルは,ユーザ,クエリ,アイテム,会話の表現学習を統合された生成フレームワークに統合することができる。
論文 参考訳(メタデータ) (2024-11-18T14:05:43Z) - ClarQ-LLM: A Benchmark for Models Clarifying and Requesting Information in Task-Oriented Dialog [11.585398152713505]
ClarQ-LLMは、バイリンガルな英語と中国語の会話タスク、会話エージェント、評価指標からなる評価フレームワークである。
ベンチマークには31の異なるタスクタイプが含まれており、それぞれに情報検索者とプロバイダエージェント間の10のユニークな対話シナリオがある。
固定された対話コンテンツに基づいてエージェントを評価する従来のベンチマークとは異なり、ClarQ-LLMには、元のヒューマンプロバイダを複製するプロバイダ対話エージェントが含まれている。
論文 参考訳(メタデータ) (2024-09-09T22:29:35Z) - Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
プロアクティブエージェントプランニングでは、ユーザエージェントの会話とエージェント環境のインタラクションに基づいて、言語エージェントが明確化のニーズを予測する必要がある。
本稿では,明確化,実行,計画の3つのエージェントからなる新しいマルチエージェントフレームワーク,Clarification-Execution-Planning(textttCEP)を提案する。
論文 参考訳(メタデータ) (2024-06-18T14:07:28Z) - Elicitron: An LLM Agent-Based Simulation Framework for Design Requirements Elicitation [38.98478510165569]
本稿では,Large Language Models (LLMs) を利用した新たなフレームワークを提案する。
LLMは多数のシミュレーションユーザ(LLMエージェント)を生成するために使用され、より広い範囲のユーザニーズの探索を可能にする。
論文 参考訳(メタデータ) (2024-04-04T17:36:29Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
現在の言語モデル駆動エージェントは、しばしば効果的なユーザ参加のメカニズムを欠いている。
Intention-in-Interaction (IN3) は明示的なクエリを通してユーザの暗黙の意図を検査するための新しいベンチマークである。
私たちは、タスクの曖昧さを積極的に評価し、ユーザの意図を問う強力なモデルであるMistral-Interactを経験的に訓練し、それらを実行可能な目標へと洗練させます。
論文 参考訳(メタデータ) (2024-02-14T14:36:30Z) - InfiAgent-DABench: Evaluating Agents on Data Analysis Tasks [84.7788065721689]
本稿では,データ解析タスクにおけるLSMに基づくエージェントの評価に特化して設計された最初のベンチマークであるInfiAgent-DABenchを紹介する。
このベンチマークには52のCSVファイルから得られた257のデータ分析質問からなるデータセットであるDAEvalが含まれている。
エージェントフレームワーク上に構築し,DABench 上で GPT-3.5 を3.9% 上回る特殊エージェント DAAgent を開発した。
論文 参考訳(メタデータ) (2024-01-10T19:04:00Z) - An Interactive Query Generation Assistant using LLM-based Prompt
Modification and User Feedback [9.461978375200102]
提案するインタフェースは,単言語および多言語文書コレクション上での対話型クエリ生成をサポートする,新しい検索インタフェースである。
このインタフェースにより、ユーザーは異なるLCMによって生成されたクエリを洗練し、検索したドキュメントやパスに対するフィードバックを提供し、より効果的なクエリを生成するプロンプトとしてユーザーのフィードバックを組み込むことができる。
論文 参考訳(メタデータ) (2023-11-19T04:42:24Z) - Social Commonsense-Guided Search Query Generation for Open-Domain
Knowledge-Powered Conversations [66.16863141262506]
本稿では,ソーシャルコモンセンスによってガイドされたインターネット検索クエリ生成に焦点を当てた新しいアプローチを提案する。
提案フレームワークは,トピックトラッキング,コモンセンス応答生成,命令駆動クエリ生成を統合することで,受動的ユーザインタラクションに対処する。
論文 参考訳(メタデータ) (2023-10-22T16:14:56Z) - Search-Engine-augmented Dialogue Response Generation with Cheaply
Supervised Query Production [98.98161995555485]
応答生成のために,任意の検索エンジンから膨大な動的情報にアクセス可能な対話モデルを提案する。
コアモジュールとして、クエリプロデューサを使用して、対話コンテキストからクエリを生成して、検索エンジンと対話する。
R@1とR@5のレートを62.4%と74.8%で達成できることを示す実験を行った。
論文 参考訳(メタデータ) (2023-02-16T01:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。