Ground and excited state energy calculations of the H2 molecule using a variational quantum eigensolver algorithm on an NMR quantum simulator
- URL: http://arxiv.org/abs/2407.01000v1
- Date: Mon, 1 Jul 2024 06:29:45 GMT
- Title: Ground and excited state energy calculations of the H2 molecule using a variational quantum eigensolver algorithm on an NMR quantum simulator
- Authors: Dileep Singh, Shashank Mehendale, Arvind, Kavita Dorai,
- Abstract summary: We implement the variational quantum eigensolver algorithm to calculate the molecular ground-state energy of the H2 molecule.
We simulate the excited states of the H2 molecule using the variational quantum deflation algorithm and experimentally demonstrate it on an NMR quantum processor.
- Score: 2.715284063484557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms are emerging as promising candidates for near-term practical applications of quantum information processors, in the field of quantum chemistry. We implement the variational quantum eigensolver algorithm to calculate the molecular ground-state energy of the H2 molecule and experimentally demonstrated it on an NMR quantum processor. Further, we simulate the excited states of the H2 molecule using the variational quantum deflation algorithm and experimentally demonstrate it on the same NMR quantum processor. We also develop the first simulation of the energy calculation of the H2 molecule using only a single qubit, and verify the results on an NMR quantum computer. Our experimental results demonstrate that only a single NMR qubit suffices to calculate the molecular energies of the H2 molecule to the desired accuracy.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Towards quantum utility for NMR quantum simulation on a NISQ computer [0.0]
We investigate the application of noisy intermediate-scale quantum devices for simulating nuclear magnetic resonance (NMR) experiments.
We show the results of simulations of proton NMR spectra on relevant molecules with up to 11 spins, and up to a total of 47 atoms, and compare them with real NMR experiments.
Despite current limitations, we show that a similar approach will eventually lead to a case of quantum utility.
arXiv Detail & Related papers (2024-04-26T17:22:24Z) - Quantum Equation of Motion with Orbital Optimization for Computing Molecular Properties in Near-Term Quantum Computing [0.0]
We present a quantum algorithm (oo-VQE-qEOM) for the calculation of molecular properties by computing expectation values on a quantum computer.
We demonstrate that the proposed algorithm can reproduce the results of conventional classical C eF calculations.
arXiv Detail & Related papers (2023-12-19T18:18:51Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Variational quantum computation with discrete variable representation for ro-vibrational calculations [0.0]
We show that the structure of the DVR Hamiltonians reduces the quantum measurement scaling complexity from exponential to efficient VQE without second quantization.
We then demonstrate that DVR Hamiltonians also lead to very efficient quantum ansatze for representing ro-vibrational states of molecules by states of a quantum computer.
arXiv Detail & Related papers (2023-03-17T08:02:38Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Calculation of the ground-state Stark effect in small molecules using
the variational quantum eigensolver [0.0]
We study a quantum simulation for the hydrogen (H2) and lithium hydride (LiH) molecules, at an actual commercially available quantum computer, the IBM Q.
Using the Variational Quantum Eigensolver (VQE) method, we study the molecule's ground state energy versus interatomic distance, under the action of stationary electric fields.
arXiv Detail & Related papers (2021-03-22T11:49:42Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Computation of molecular excited states on IBM quantum computers using a
discriminative variational quantum eigensolver [0.965964228590342]
We propose a variational quantum machine learning based method to determine molecular excited states.
Our method uses a combination of two parametrized quantum circuits, working in tandem, combined with a Variational Quantum Eigensolver (VQE) to iteratively find the eigenstates of a molecular Hamiltonian.
arXiv Detail & Related papers (2020-01-14T17:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.