論文の概要: DistML.js: Installation-free Distributed Deep Learning Framework for Web Browsers
- arxiv url: http://arxiv.org/abs/2407.01023v1
- Date: Mon, 1 Jul 2024 07:13:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 00:25:59.870553
- Title: DistML.js: Installation-free Distributed Deep Learning Framework for Web Browsers
- Title(参考訳): DistML.js:Webブラウザ向けのインストール不要な分散ディープラーニングフレームワーク
- Authors: Masatoshi Hidaka, Tomohiro Hashimoto, Yuto Nishizawa, Tatsuya Harada,
- Abstract要約: DistML.jsは、Webブラウザ内で機械学習モデルのトレーニングと推論のために設計されたライブラリである。
実用的なアプリケーションとともに、DistML.jsの設計、API、実装に関する包括的な説明を提供する。
- 参考スコア(独自算出の注目度): 40.48978035180545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present "DistML.js", a library designed for training and inference of machine learning models within web browsers. Not only does DistML.js facilitate model training on local devices, but it also supports distributed learning through communication with servers. Its design and define-by-run API for deep learning model construction resemble PyTorch, thereby reducing the learning curve for prototyping. Matrix computations involved in model training and inference are executed on the backend utilizing WebGL, enabling high-speed calculations. We provide a comprehensive explanation of DistML.js's design, API, and implementation, alongside practical applications including data parallelism in learning. The source code is publicly available at https://github.com/mil-tokyo/distmljs.
- Abstract(参考訳): DistML.jsは、Webブラウザ内での機械学習モデルのトレーニングと推論用に設計されたライブラリである。
DistML.jsはローカルデバイスでのモデルトレーニングを促進するだけでなく、サーバとの通信を通じて分散学習もサポートする。
ディープラーニングモデル構築のための設計と定義・バイ・ランAPIは、PyTorchに似ているため、プロトタイピングの学習曲線が減少する。
モデルトレーニングと推論に関わる行列計算は、WebGLを利用してバックエンド上で実行され、高速な計算が可能となる。
DistML.jsの設計、API、実装に関する包括的な説明と、学習におけるデータ並列性を含む実用的なアプリケーションについて説明する。
ソースコードはhttps://github.com/mil-tokyo/distmljsで公開されている。
関連論文リスト
- ModelScope-Agent: Building Your Customizable Agent System with
Open-source Large Language Models [74.64651681052628]
本稿では,オープンソースのLCMをコントローラとする実世界のアプリケーションのためのカスタマイズ可能なエージェントフレームワークであるModelScope-Agentを紹介する。
ユーザフレンドリーなシステムライブラリを提供し、カスタマイズ可能なエンジン設計により、複数のオープンソースLLMでモデルトレーニングをサポートする。
ツール使用データ収集、ツール検索、ツール登録、メモリ制御、カスタマイズされたモデルトレーニング、評価にまたがる包括的なフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-09-02T16:50:30Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Scaling Up Models and Data with $\texttt{t5x}$ and $\texttt{seqio}$ [118.04625413322827]
$texttt5x$と$texttseqio$は、言語モデルの構築とトレーニングのためのオープンソースのソフトウェアライブラリである。
これらのライブラリは、複数のテラバイトのトレーニングデータを持つデータセット上で、数十億のパラメータを持つモデルをトレーニングするために使用されています。
論文 参考訳(メタデータ) (2022-03-31T17:12:13Z) - FLHub: a Federated Learning model sharing service [0.7614628596146599]
機械学習モデルの共有サービスとしてフェデレートラーニングハブ(FLHub)を提案する。
FLHubを使えば、GitHubと同じように、他の開発者が開発したモデルをアップロード、ダウンロード、コントリビュートすることができる。
我々は、フォークモデルが既存のモデルよりも速くトレーニングを完了し、各フェデレートラウンドで学習がより高速に進行できることを実証した。
論文 参考訳(メタデータ) (2022-02-14T06:02:55Z) - Solo-learn: A Library of Self-supervised Methods for Visual
Representation Learning [83.02597612195966]
solo-learnは視覚表現学習のための自己指導型のメソッドのライブラリである。
Pythonで実装され、PytorchとPytorch Lightningを使用して、このライブラリは研究と業界のニーズの両方に適合する。
論文 参考訳(メタデータ) (2021-08-03T22:19:55Z) - WAX-ML: A Python library for machine learning and feedback loops on
streaming data [0.0]
WAX-MLは研究指向のPythonライブラリである。
強力な機械学習アルゴリズムを設計するためのツールを提供する。
JAXを時系列専用のツールで補完しようと努力しています。
論文 参考訳(メタデータ) (2021-06-11T17:42:02Z) - ThingML+ Augmenting Model-Driven Software Engineering for the Internet
of Things with Machine Learning [4.511923587827301]
本稿では,ThingMLの方法論,モデリング言語,ツールサポートの拡張を目的とした研究プロジェクトであるML-Quadratの現況を紹介する。
多くの場合、IoT/CPSサービスにはシステムコンポーネントや物理プロセスが含まれています。
ストリーム処理と複合イベント処理、すなわちApache SAMOAとApamaに関して、コード生成のための2つのターゲットプラットフォームをサポートする予定です。
論文 参考訳(メタデータ) (2020-09-22T15:45:45Z) - From Things' Modeling Language (ThingML) to Things' Machine Learning
(ThingML2) [4.014524824655106]
我々はThingMLを拡張し、モデリングレベルで機械学習をサポートする。
当社のDSLでは、データ分析を行う責務を負うものを定義することができます。
コードジェネレータはJavaとPythonで完全な実装を自動的に生成できます。
論文 参考訳(メタデータ) (2020-09-22T15:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。