論文の概要: Learning to Explore and Select for Coverage-Conditioned Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2407.01158v1
- Date: Mon, 1 Jul 2024 10:26:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-03 21:59:43.057274
- Title: Learning to Explore and Select for Coverage-Conditioned Retrieval-Augmented Generation
- Title(参考訳): 検索条件付き検索生成のための探索と選択の学習
- Authors: Takyoung Kim, Kyungjae Lee, Young Rok Jang, Ji Yong Cho, Gangwoo Kim, Minseok Cho, Moontae Lee,
- Abstract要約: ユーザが特定の範囲の情報を要求するシナリオにおけるクエリアウトラインの役割に焦点を当てる。
C2$のシナリオでは、特定のトピックについて様々な視点で10Kの情報検索クエリであるQTreeを構築します。
検索強化世代(RAG)を対象とした自動評価と人的評価によるアウトライン生成の有効性の分析を行った。
- 参考スコア(独自算出の注目度): 17.96176020727917
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Interactions with billion-scale large language models typically yield long-form responses due to their extensive parametric capacities, along with retrieval-augmented features. While detailed responses provide insightful viewpoint of a specific subject, they frequently generate redundant and less engaging content that does not meet user interests. In this work, we focus on the role of query outlining (i.e., selected sequence of queries) in scenarios that users request a specific range of information, namely coverage-conditioned ($C^2$) scenarios. For simulating $C^2$ scenarios, we construct QTree, 10K sets of information-seeking queries decomposed with various perspectives on certain topics. By utilizing QTree, we train QPlanner, a 7B language model generating customized query outlines that follow coverage-conditioned queries. We analyze the effectiveness of generated outlines through automatic and human evaluation, targeting on retrieval-augmented generation (RAG). Moreover, the experimental results demonstrate that QPlanner with alignment training can further provide outlines satisfying diverse user interests. Our resources are available at https://github.com/youngerous/qtree.
- Abstract(参考訳): 数十億の大規模言語モデルとの相互作用は、典型的には、その広範囲なパラメトリック能力と、検索強化された特徴により、長めの応答をもたらす。
詳細な回答は特定の主題の洞察に富んだ視点を提供するが、ユーザーの興味を満たさない冗長でエンゲージメントの低いコンテンツを頻繁に生成する。
本研究では,ユーザが特定の範囲の情報,すなわちカバレッジ条件(C^2$)のシナリオを要求するシナリオにおいて,クエリアウトライン(クエリの選択シーケンス)の役割に焦点を当てる。
C^2$のシナリオをシミュレートするために、特定のトピックについて様々な視点で分解された10Kの情報検索クエリであるQTreeを構築します。
QTreeを利用することで、7B言語モデルであるQPlannerをトレーニングします。
本研究では,自動評価と人的評価によって生成されたアウトラインの有効性を,検索強化生成(RAG)に基づいて分析する。
さらに、アライメントトレーニングを施したQPlannerが、多様なユーザ関心を満たすアウトラインを提供することを示す実験結果が得られた。
リソースはhttps://github.com/youngerous/qtree.comから入手可能です。
関連論文リスト
- Improving Scientific Document Retrieval with Concept Coverage-based Query Set Generation [49.29180578078616]
概念カバレッジに基づくクエリセット生成(CCQGen)フレームワークは、ドキュメントの概念を包括的に網羅したクエリセットを生成するように設計されている。
従来のクエリでは十分にカバーされていない概念を識別し,その後のクエリ生成の条件として活用する。
このアプローチは、それぞれの新しいクエリをガイドして、以前のクエリを補完し、ドキュメントの徹底的な理解を支援する。
論文 参考訳(メタデータ) (2025-02-16T15:59:50Z) - Re-ranking the Context for Multimodal Retrieval Augmented Generation [28.63893944806149]
Retrieval-augmented Generation (RAG)は、文脈内で応答を生成するために外部知識を組み込むことで、大きな言語モデル(LLM)を強化する。
RAGシステムは固有の課題に直面している: (i) 検索プロセスはユーザクエリ(画像、文書など)への無関係なエントリを選択することができ、 (ii) 視覚言語モデルや GPT-4o のようなマルチモーダル言語モデルは、RAG出力を生成するためにこれらのエントリを処理する際に幻覚を与える。
より高度な関連性尺度を用いることで、知識ベースからより関連性の高い項目を選択して排除することにより、検索プロセスを強化することができることを示す。
論文 参考訳(メタデータ) (2025-01-08T18:58:22Z) - ConTReGen: Context-driven Tree-structured Retrieval for Open-domain Long-form Text Generation [26.4086456393314]
長い形式のテキスト生成には、幅と深さの両方で複雑なクエリに対処する一貫性のある包括的な応答が必要である。
既存の反復的な検索拡張生成アプローチは、複雑なクエリの各側面を深く掘り下げるのに苦労することが多い。
本稿では,コンテキスト駆動型木構造検索手法を用いた新しいフレームワークであるConTReGenを紹介する。
論文 参考訳(メタデータ) (2024-10-20T21:17:05Z) - An Evaluation Framework for Attributed Information Retrieval using Large Language Models [5.216296688442701]
本稿では,属性情報検索の評価とベンチマークを行うフレームワークを提案する。
属性付き情報探索データセットであるHAGRIDを用いた実験では、さまざまなシナリオが回答の正しさと帰属性に与える影響が示されている。
論文 参考訳(メタデータ) (2024-09-12T12:57:08Z) - RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation [35.981443744108255]
本稿ではRichRAGという新しいRAGフレームワークを提案する。
これには、入力された質問の潜在的なサブアスペクトを特定するサブアスペクトエクスプローラー、これらのサブアスペクトに関連する多様な外部文書の候補プールを構築するレトリバー、および生成リストワイズローダが含まれる。
2つの公開データセットの実験結果から,我々のフレームワークがユーザに対して包括的かつ満足な応答を効果的に提供できることが証明された。
論文 参考訳(メタデータ) (2024-06-18T12:52:51Z) - Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
大規模言語モデルにおける長文文の活用について検討し,本書全体の読解データを作成する。
我々の目的は、長いテキストの詳細な理解を必要とする問題を分析し、理解し、推論するLLMの能力をテストすることである。
論文 参考訳(メタデータ) (2024-05-31T20:15:10Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - generAItor: Tree-in-the-Loop Text Generation for Language Model
Explainability and Adaptation [28.715001906405362]
大規模言語モデル(LLM)は、自動補完、補助的な書き込み、チャットベースのテキスト生成など、様々な下流タスクに広くデプロイされている。
本稿では,ビーム探索ツリーの視覚的表現を解析,説明,適応する中心的な要素とする,ループ内ツリーのアプローチを提案することで,この欠点に対処する。
視覚解析技術であるGenerAItorを,タスク固有のウィジェットで中央ビーム探索木を拡大し,ターゲットとした可視化とインタラクションの可能性を提供する。
論文 参考訳(メタデータ) (2024-03-12T13:09:15Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z) - PROXYQA: An Alternative Framework for Evaluating Long-Form Text Generation with Large Language Models [72.57329554067195]
ProxyQAは、長文生成を評価するための革新的なフレームワークである。
さまざまなドメインにまたがる詳細なヒューマンキュレートされたメタクエストで構成されており、それぞれに事前にアノテートされた回答を持つ特定のプロキシクエストが伴っている。
プロキシクエリに対処する際の評価器の精度を通じて、生成されたコンテンツの品質を評価する。
論文 参考訳(メタデータ) (2024-01-26T18:12:25Z) - Diversity Enhanced Narrative Question Generation for Storybooks [4.043005183192124]
マルチクエスト生成モデル(mQG)を導入し,複数の,多様な,回答可能な質問を生成する。
生成した質問の応答性を検証するために,SQuAD2.0の微調整された質問応答モデルを用いる。
mQGは、強力なベースラインの中で、様々な評価指標で有望な結果を示している。
論文 参考訳(メタデータ) (2023-10-25T08:10:04Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - UNK-VQA: A Dataset and a Probe into the Abstention Ability of Multi-modal Large Models [55.22048505787125]
本稿ではUNK-VQAと呼ばれる包括的データセットを提案する。
まず、画像または疑問について意図的に摂動することで、既存のデータを拡大する。
そこで我々は,新たなマルチモーダル大規模モデルのゼロショット性能と少数ショット性能を広範囲に評価した。
論文 参考訳(メタデータ) (2023-10-17T02:38:09Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Learning to Retrieve Engaging Follow-Up Queries [12.380514998172199]
ユーザが持つ可能性のある次の質問を予測するための検索ベースシステムと関連するデータセットを提案する。
このようなシステムは,ユーザの知識探索を積極的に支援することで,より活発な対話を実現する。
論文 参考訳(メタデータ) (2023-02-21T20:26:23Z) - Semantic Parsing for Conversational Question Answering over Knowledge
Graphs [63.939700311269156]
本研究では,ユーザの質問にSparqlパースとアノテートし,システム回答が実行結果に対応するデータセットを開発する。
本稿では,2つの意味解析手法を提案し,その課題を強調した。
私たちのデータセットとモデルはhttps://github.com/Edinburgh/SPICE.orgで公開されています。
論文 参考訳(メタデータ) (2023-01-28T14:45:11Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
本モデルでは,既存のKG補完アルゴリズムよりも複雑な推論パターンを必要とする問合せに対して,より効果的に答えることを示す。
提案モデルは、KBQAベンチマークの最先端モデルよりも優れているか、競合的に動作する。
論文 参考訳(メタデータ) (2022-02-22T01:34:35Z) - Aspect-Oriented Summarization through Query-Focused Extraction [23.62412515574206]
実際のユーザのニーズは、特定のクエリではなく、ユーザが興味を持っているデータセットの幅広いトピックという側面に、より深く浸透することが多い。
抽出クエリに焦点を絞った学習手法をベンチマークし、モデルを訓練するための対照的な拡張手法を提案する。
我々は2つのアスペクト指向データセットを評価し、この手法が一般的な要約システムよりも焦点を絞った要約を得られることを発見した。
論文 参考訳(メタデータ) (2021-10-15T18:06:21Z) - Text Summarization with Latent Queries [60.468323530248945]
本稿では,LaQSumについて紹介する。LaQSumは,既存の問合せ形式と抽象的な要約のための文書から遅延クエリを学習する,最初の統一テキスト要約システムである。
本システムでは, 潜伏クエリモデルと条件付き言語モデルとを協調的に最適化し, ユーザがテスト時に任意のタイプのクエリをプラグイン・アンド・プレイできるようにする。
本システムでは,クエリタイプ,文書設定,ターゲットドメインの異なる要約ベンチマークにおいて,強力な比較システムの性能を強く向上させる。
論文 参考訳(メタデータ) (2021-05-31T21:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。