論文の概要: Learning to Explore and Select for Coverage-Conditioned Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2407.01158v2
- Date: Fri, 24 Jan 2025 20:09:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:51:26.487364
- Title: Learning to Explore and Select for Coverage-Conditioned Retrieval-Augmented Generation
- Title(参考訳): 検索条件付き検索生成のための探索と選択の学習
- Authors: Takyoung Kim, Kyungjae Lee, Young Rok Jang, Ji Yong Cho, Gangwoo Kim, Minseok Cho, Moontae Lee,
- Abstract要約: QTreeのバウンダリ内でカスタマイズされたアウトラインを生成するためにトレーニングされた言語モデルであるQPlannerを開発する。
自動判断と人的判断により生成したアウトラインの有効性を評価する。
- 参考スコア(独自算出の注目度): 17.96176020727917
- License:
- Abstract: Interactions with large language models (LLMs) often yield long and detailed responses, leveraging both parametric knowledge and retrieval-augmented generation (RAG). While these responses can provide rich insights, they often include redundant or less engaging content not aligned with user interests. This issue becomes apparent when users specify particular subtopics to include or exclude -- termed coverage-conditioned ($C^2$) queries -- as LLMs often struggle to provide tailored responses. To address this challenge, we investigate the role of query outlines, sequences of subqueries designed to guide LLMs in generating responses that meet specific user requirements. To systematically create and evaluate these outlines, we introduce QTree, a dataset of 10K hierarchical sets of information-seeking subqueries that define structured boundaries for outline creation and evaluation in $C^2$ scenarios. Additionally, we develop QPlanner, a 7B language model trained to generate customized outlines within boundaries of QTree. We evaluate the effectiveness of the generated outlines through automatic and human judgements, focusing on their impact within retrieval-augmented generation (RAG) systems. Experimental results demonstrate that QPlanner, especially when trained with alignment techniques like DPO, generates higher-quality outlines that better fulfill diverse user needs.
- Abstract(参考訳): 大規模言語モデル(LLM)との相互作用は、しばしば、パラメトリック知識と検索強化世代(RAG)の両方を活用する、長く詳細な応答をもたらす。
これらのレスポンスは、豊富な洞察を提供することができるが、しばしば、ユーザーの関心に合わない冗長な、あるいは少ないエンゲージメントなコンテンツを含んでいる。
この問題は、ユーザが特定のサブトピックを指定して -- カバレッジ条件付き(C^2$)クエリを含むか排除する場合に明らかになる。
この課題に対処するために,特定のユーザ要求を満たす応答を生成する上で,LCMをガイドするクエリアウトライン,サブクエリのシーケンスなどについて検討する。
これらのアウトラインを体系的に作成・評価するために、QTreeは、10Kの階層的な情報探索サブクエリのデータセットで、アウトラインの生成と評価を$C^2$シナリオで定義する。
さらに、QTreeのバウンダリ内でカスタマイズされたアウトラインを生成するために訓練された7B言語モデルであるQPlannerを開発する。
自動判断と人的判断によって生成されたアウトラインの有効性を評価し,検索強化世代システム(RAG)における影響に着目した。
実験の結果、QPlanner、特にDPOのようなアライメントテクニックでトレーニングされた場合、多様なユーザニーズを満たすための高品質なアウトラインが生成されることが示されている。
関連論文リスト
- Re-ranking the Context for Multimodal Retrieval Augmented Generation [28.63893944806149]
Retrieval-augmented Generation (RAG)は、文脈内で応答を生成するために外部知識を組み込むことで、大きな言語モデル(LLM)を強化する。
RAGシステムは固有の課題に直面している: (i) 検索プロセスはユーザクエリ(画像、文書など)への無関係なエントリを選択することができ、 (ii) 視覚言語モデルや GPT-4o のようなマルチモーダル言語モデルは、RAG出力を生成するためにこれらのエントリを処理する際に幻覚を与える。
より高度な関連性尺度を用いることで、知識ベースからより関連性の高い項目を選択して排除することにより、検索プロセスを強化することができることを示す。
論文 参考訳(メタデータ) (2025-01-08T18:58:22Z) - ConTReGen: Context-driven Tree-structured Retrieval for Open-domain Long-form Text Generation [26.4086456393314]
長い形式のテキスト生成には、幅と深さの両方で複雑なクエリに対処する一貫性のある包括的な応答が必要である。
既存の反復的な検索拡張生成アプローチは、複雑なクエリの各側面を深く掘り下げるのに苦労することが多い。
本稿では,コンテキスト駆動型木構造検索手法を用いた新しいフレームワークであるConTReGenを紹介する。
論文 参考訳(メタデータ) (2024-10-20T21:17:05Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation [35.981443744108255]
本稿ではRichRAGという新しいRAGフレームワークを提案する。
これには、入力された質問の潜在的なサブアスペクトを特定するサブアスペクトエクスプローラー、これらのサブアスペクトに関連する多様な外部文書の候補プールを構築するレトリバー、および生成リストワイズローダが含まれる。
2つの公開データセットの実験結果から,我々のフレームワークがユーザに対して包括的かつ満足な応答を効果的に提供できることが証明された。
論文 参考訳(メタデータ) (2024-06-18T12:52:51Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の能力を高める技術である。
本稿では,大規模かつ包括的なベンチマークを構築し,様々なRAGアプリケーションシナリオにおけるRAGシステムのすべてのコンポーネントを評価する。
論文 参考訳(メタデータ) (2024-01-30T14:25:32Z) - PROXYQA: An Alternative Framework for Evaluating Long-Form Text Generation with Large Language Models [72.57329554067195]
ProxyQAは、長文生成を評価するための革新的なフレームワークである。
さまざまなドメインにまたがる詳細なヒューマンキュレートされたメタクエストで構成されており、それぞれに事前にアノテートされた回答を持つ特定のプロキシクエストが伴っている。
プロキシクエリに対処する際の評価器の精度を通じて、生成されたコンテンツの品質を評価する。
論文 参考訳(メタデータ) (2024-01-26T18:12:25Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Learning to Retrieve Engaging Follow-Up Queries [12.380514998172199]
ユーザが持つ可能性のある次の質問を予測するための検索ベースシステムと関連するデータセットを提案する。
このようなシステムは,ユーザの知識探索を積極的に支援することで,より活発な対話を実現する。
論文 参考訳(メタデータ) (2023-02-21T20:26:23Z) - Text Summarization with Latent Queries [60.468323530248945]
本稿では,LaQSumについて紹介する。LaQSumは,既存の問合せ形式と抽象的な要約のための文書から遅延クエリを学習する,最初の統一テキスト要約システムである。
本システムでは, 潜伏クエリモデルと条件付き言語モデルとを協調的に最適化し, ユーザがテスト時に任意のタイプのクエリをプラグイン・アンド・プレイできるようにする。
本システムでは,クエリタイプ,文書設定,ターゲットドメインの異なる要約ベンチマークにおいて,強力な比較システムの性能を強く向上させる。
論文 参考訳(メタデータ) (2021-05-31T21:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。