Benchmarking Predictive Coding Networks -- Made Simple
- URL: http://arxiv.org/abs/2407.01163v1
- Date: Mon, 1 Jul 2024 10:33:44 GMT
- Title: Benchmarking Predictive Coding Networks -- Made Simple
- Authors: Luca Pinchetti, Chang Qi, Oleh Lokshyn, Gaspard Olivers, Cornelius Emde, Mufeng Tang, Amine M'Charrak, Simon Frieder, Bayar Menzat, Rafal Bogacz, Thomas Lukasiewicz, Tommaso Salvatori,
- Abstract summary: We first propose a library called PCX, whose focus lies on performance and simplicity.
We use PCX to implement a large set of benchmarks for the community to use for their experiments.
- Score: 48.652114040426625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we tackle the problems of efficiency and scalability for predictive coding networks in machine learning. To do so, we first propose a library called PCX, whose focus lies on performance and simplicity, and provides a user-friendly, deep-learning oriented interface. Second, we use PCX to implement a large set of benchmarks for the community to use for their experiments. As most works propose their own tasks and architectures, do not compare one against each other, and focus on small-scale tasks, a simple and fast open-source library adopted by the whole community would address all of these concerns. Third, we perform extensive benchmarks using multiple algorithms, setting new state-of-the-art results in multiple tasks and datasets, as well as highlighting limitations inherent to PC that should be addressed. Thanks to the efficiency of PCX, we are able to analyze larger architectures than commonly used, providing baselines to galvanize community efforts towards one of the main open problems in the field: scalability. The code for PCX is available at \textit{https://github.com/liukidar/pcax}.
Related papers
- Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
Uncertainty quantification is a key element of machine learning applications.
We introduce a novel benchmark that implements a collection of state-of-the-art UQ baselines.
We conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches.
arXiv Detail & Related papers (2024-06-21T20:06:31Z) - Enriching the Machine Learning Workloads in BigBench [0.4178382980763478]
This work enriches the improved BigBench V2 with three new workloads and expands the coverage of machine learning algorithms.
Our workloads utilize multiple algorithms and compare different implementations for the same algorithm across several popular libraries like MLlib, SystemML, Scikit-learn and Pandas.
arXiv Detail & Related papers (2024-06-16T08:32:28Z) - LLaMA-NAS: Efficient Neural Architecture Search for Large Language Models [3.4070166891274263]
Large language models (LLMs) solve natural language processing, complex reasoning, sentiment analysis and other tasks.
These abilities come with very high memory and computational costs which precludes the use of LLMs on most hardware platforms.
We propose an effective method of finding Pareto-optimal network architectures based on LLaMA2-7B using one-shot NAS.
We show that, for certain standard benchmark tasks, the pre-trained LLaMA2-7B network is unnecessarily large and complex.
arXiv Detail & Related papers (2024-05-28T17:20:44Z) - torchgfn: A PyTorch GFlowNet library [56.071033896777784]
torchgfn is a PyTorch library that aims to address this need.
It provides users with a simple API for environments and useful abstractions for samplers and losses.
arXiv Detail & Related papers (2023-05-24T00:20:59Z) - AutoCoreset: An Automatic Practical Coreset Construction Framework [65.37876706107764]
A coreset is a tiny weighted subset of an input set, that closely resembles the loss function.
We propose an automatic framework for constructing coresets, which requires only the input data and the desired cost function from the user.
We show that while this set is limited, the coreset is quite general.
arXiv Detail & Related papers (2023-05-19T19:59:52Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z) - Improving Inference Performance of Machine Learning with the
Divide-and-Conquer Principle [0.0]
Many popular machine learning models scale poorly when deployed on CPUs.
We propose a simple, yet effective approach based on the Divide-and-Conquer Principle to tackle this problem.
We implement this idea in the popular OnnxRuntime framework and evaluate its effectiveness with several use cases.
arXiv Detail & Related papers (2023-01-12T15:55:12Z) - Towards Practical Few-Shot Query Sets: Transductive Minimum Description
Length Inference [0.0]
We introduce a PrimAl Dual Minimum Description LEngth (PADDLE) formulation, which balances data-fitting accuracy and model complexity for a given few-shot task.
Our constrained MDL-like objective promotes competition among a large set of possible classes, preserving only effective classes that befit better the data of a few-shot task.
arXiv Detail & Related papers (2022-10-26T08:06:57Z) - PDEBENCH: An Extensive Benchmark for Scientific Machine Learning [20.036987098901644]
We introduce PDEBench, a benchmark suite of time-dependent simulation tasks based on Partial Differential Equations (PDEs)
PDEBench comprises both code and data to benchmark the performance of novel machine learning models against both classical numerical simulations and machine learning baselines.
arXiv Detail & Related papers (2022-10-13T17:03:36Z) - Towards making the most of NLP-based device mapping optimization for
OpenCL kernels [5.6596607119831575]
We extend the work of Cummins et al., namely Deeptune, that tackles the problem of optimal device selection ( CPU or GPU) for accelerated OpenCL kernels.
We propose four different models that provide enhanced contextual information of source codes.
Experimental results show that our proposed methodology surpasses that of Cummins et al. work, providing up to 4% improvement in prediction accuracy.
arXiv Detail & Related papers (2022-08-30T10:20:55Z) - Benchopt: Reproducible, efficient and collaborative optimization
benchmarks [67.29240500171532]
Benchopt is a framework to automate, reproduce and publish optimization benchmarks in machine learning.
Benchopt simplifies benchmarking for the community by providing an off-the-shelf tool for running, sharing and extending experiments.
arXiv Detail & Related papers (2022-06-27T16:19:24Z) - HiRID-ICU-Benchmark -- A Comprehensive Machine Learning Benchmark on
High-resolution ICU Data [0.8418021941792283]
We aim to provide a benchmark covering a large spectrum of ICU-related tasks.
Using the HiRID dataset, we define multiple clinically relevant tasks developed in collaboration with clinicians.
We provide an in-depth analysis of current state-of-the-art sequence modeling methods, highlighting some limitations of deep learning approaches for this type of data.
arXiv Detail & Related papers (2021-11-16T15:06:42Z) - Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep
Learning [66.59455427102152]
We introduce Uncertainty Baselines: high-quality implementations of standard and state-of-the-art deep learning methods on a variety of tasks.
Each baseline is a self-contained experiment pipeline with easily reusable and extendable components.
We provide model checkpoints, experiment outputs as Python notebooks, and leaderboards for comparing results.
arXiv Detail & Related papers (2021-06-07T23:57:32Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint variable assignment, and bounding the gap in objective value between that assignment and an optimal one.
Our approach constructs two corresponding neural network-based components, Neural Diving and Neural Branching, to use in a base MIP solver such as SCIP.
We evaluate our approach on six diverse real-world datasets, including two Google production datasets and MIPLIB, by training separate neural networks on each.
arXiv Detail & Related papers (2020-12-23T09:33:11Z) - KILT: a Benchmark for Knowledge Intensive Language Tasks [102.33046195554886]
We present a benchmark for knowledge-intensive language tasks (KILT)
All tasks in KILT are grounded in the same snapshot of Wikipedia.
We find that a shared dense vector index coupled with a seq2seq model is a strong baseline.
arXiv Detail & Related papers (2020-09-04T15:32:19Z) - CATCH: Context-based Meta Reinforcement Learning for Transferrable
Architecture Search [102.67142711824748]
CATCH is a novel Context-bAsed meTa reinforcement learning algorithm for transferrable arChitecture searcH.
The combination of meta-learning and RL allows CATCH to efficiently adapt to new tasks while being agnostic to search spaces.
It is also capable of handling cross-domain architecture search as competitive networks on ImageNet, COCO, and Cityscapes are identified.
arXiv Detail & Related papers (2020-07-18T09:35:53Z) - Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic
Circuits [99.59941892183454]
We propose Einsum Networks (EiNets), a novel implementation design for PCs.
At their core, EiNets combine a large number of arithmetic operations in a single monolithic einsum-operation.
We show that the implementation of Expectation-Maximization (EM) can be simplified for PCs, by leveraging automatic differentiation.
arXiv Detail & Related papers (2020-04-13T23:09:15Z) - Optimizing Streaming Parallelism on Heterogeneous Many-Core
Architectures: A Machine Learning Based Approach [16.702537371391053]
This article presents an automatic approach to derive a good solution for hardware resource partition and task granularity for task-based parallel applications on heterogeneous many-core architectures.
Our approach employs a performance model to estimate the resulting performance of the target application under a given resource partition and task granularity configuration.
Compared to the single-stream version, our approach achieves a 1.6x and 1.1x speedup on the XeonPhi and the GPU platform, respectively.
arXiv Detail & Related papers (2020-03-05T21:18:21Z) - NAS evaluation is frustratingly hard [1.7188280334580197]
Neural Architecture Search (NAS) is an exciting new field which promises to be as much as a game-changer as Convolutional Neural Networks were in 2012.
Comparison between different methods is still very much an open issue.
Our first contribution is a benchmark of $8$ NAS methods on $5$ datasets.
arXiv Detail & Related papers (2019-12-28T21:24:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.