論文の概要: A Learned Generalized Geodesic Distance Function-Based Approach for Node Feature Augmentation on Graphs
- arxiv url: http://arxiv.org/abs/2407.01194v1
- Date: Mon, 1 Jul 2024 11:39:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 21:49:58.238373
- Title: A Learned Generalized Geodesic Distance Function-Based Approach for Node Feature Augmentation on Graphs
- Title(参考訳): 一般測地距離関数に基づくグラフ上のノード特徴増大のための学習的アプローチ
- Authors: Amitoz Azad, Yuan Fang,
- Abstract要約: 我々はLGGD(Learned Generalized Geodesic Distances)と呼ばれるアプローチを導入する。
この方法は、訓練パイプラインを通して一般化された測地距離関数を学習することによりノード特徴を生成する。
この手法の強みは、一般化された測地線距離からノイズや外れ値への強靭性にある。
- 参考スコア(独自算出の注目度): 9.48959147458029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geodesic distances on manifolds have numerous applications in image processing, computer graphics and computer vision. In this work, we introduce an approach called `LGGD' (Learned Generalized Geodesic Distances). This method involves generating node features by learning a generalized geodesic distance function through a training pipeline that incorporates training data, graph topology and the node content features. The strength of this method lies in the proven robustness of the generalized geodesic distances to noise and outliers. Our contributions encompass improved performance in node classification tasks, competitive results with state-of-the-art methods on real-world graph datasets, the demonstration of the learnability of parameters within the generalized geodesic equation on graph, and dynamic inclusion of new labels.
- Abstract(参考訳): 多様体上の測地線距離は、画像処理、コンピュータグラフィックス、コンピュータビジョンに多くの応用がある。
本研究では,「LGGD(Learned Generalized Geodesic Distances)」というアプローチを導入する。
この方法は、トレーニングデータ、グラフトポロジ、ノード内容特徴を組み込んだトレーニングパイプラインを通じて、一般化された測地距離関数を学習することにより、ノード特徴を生成する。
この手法の強みは、一般化された測地線距離からノイズや外れ値への強靭性にある。
我々の貢献は、ノード分類タスクの性能向上、実世界のグラフデータセットにおける最先端手法との競合結果、グラフ上の一般化測地方程式におけるパラメータの学習可能性の実証、新しいラベルの動的包摂などである。
関連論文リスト
- DiRW: Path-Aware Digraph Learning for Heterophily [23.498557237805414]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのための強力な表現学習ツールとして登場した。
我々は,プラグイン・アンド・プレイ戦略や革新的なニューラルアーキテクチャとみなすことができるDirected Random Walk (DiRW)を提案する。
DiRWには、歩行確率、長さ、および数の観点から最適化された方向対応パスサンプリング器が組み込まれている。
論文 参考訳(メタデータ) (2024-10-14T09:26:56Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRAREはノード相対エントロピーと深層強化学習に基づいて構築されたフレームワークである。
革新的なノード相対エントロピーは、ノードペア間の相互情報を測定するために使用される。
グラフトポロジを最適化するために,深層強化学習に基づくアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-15T11:30:18Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
グラフ埋め込みの信頼性は、連続空間の幾何がグラフ構造とどの程度一致しているかに依存する。
我々は、この問題を解決することができる、ソフト多様体と呼ばれる新しい多様体のクラスを導入する。
グラフ埋め込みにソフト多様体を用いることで、複雑なデータセット上のデータ解析における任意のタスクを追求するための連続空間を提供できる。
論文 参考訳(メタデータ) (2023-11-29T12:48:33Z) - Learning to Identify Graphs from Node Trajectories in Multi-Robot
Networks [15.36505600407192]
本稿では,グローバル収束保証付きグラフトポロジを効率的に発見する学習ベースアプローチを提案する。
マルチロボット生成および群れ処理におけるグラフの同定におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-07-10T07:09:12Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
グラフニューラルネットワークは、従来のニューラルネットワークをグラフ構造化データに一般化する。
グラフ関連学習におけるユークリッドモデルの性能は、ユークリッド幾何学の表現能力によって依然として制限されている。
近年,木のような構造を持つグラフデータ処理や,ゆるい分布の処理において,双曲空間が人気が高まっている。
論文 参考訳(メタデータ) (2022-02-28T15:08:48Z) - Learning Connectivity with Graph Convolutional Networks for
Skeleton-based Action Recognition [14.924672048447338]
グラフのトポロジ特性を学習するグラフ畳み込みネットワークのための新しいフレームワークを提案する。
本手法の設計原理は制約対象関数の最適化に基づいている。
骨格に基づく行動認識の課題に対して行った実験は,提案手法の優位性を示している。
論文 参考訳(メタデータ) (2021-12-06T19:43:26Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
畳み込みニューラルネットワークは、ハイパースペクトル画像分類に広く応用されている。
近年の手法は空間トポロジのグラフ畳み込みによってこの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-06-26T06:24:51Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。