論文の概要: Learning Connectivity with Graph Convolutional Networks for
Skeleton-based Action Recognition
- arxiv url: http://arxiv.org/abs/2112.03328v1
- Date: Mon, 6 Dec 2021 19:43:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-08 14:23:19.272166
- Title: Learning Connectivity with Graph Convolutional Networks for
Skeleton-based Action Recognition
- Title(参考訳): スケルトンに基づく行動認識のためのグラフ畳み込みネットワークを用いた学習接続
- Authors: Hichem Sahbi
- Abstract要約: グラフのトポロジ特性を学習するグラフ畳み込みネットワークのための新しいフレームワークを提案する。
本手法の設計原理は制約対象関数の最適化に基づいている。
骨格に基づく行動認識の課題に対して行った実験は,提案手法の優位性を示している。
- 参考スコア(独自算出の注目度): 14.924672048447338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning graph convolutional networks (GCNs) is an emerging field which aims
at generalizing convolutional operations to arbitrary non-regular domains. In
particular, GCNs operating on spatial domains show superior performances
compared to spectral ones, however their success is highly dependent on how the
topology of input graphs is defined. In this paper, we introduce a novel
framework for graph convolutional networks that learns the topological
properties of graphs. The design principle of our method is based on the
optimization of a constrained objective function which learns not only the
usual convolutional parameters in GCNs but also a transformation basis that
conveys the most relevant topological relationships in these graphs.
Experiments conducted on the challenging task of skeleton-based action
recognition shows the superiority of the proposed method compared to
handcrafted graph design as well as the related work.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は、任意の非正規領域への畳み込み操作の一般化を目的とした新興分野である。
特に、空間領域で動作するGCNはスペクトルよりも優れた性能を示すが、その成功は入力グラフのトポロジーの定義方法に大きく依存する。
本稿では,グラフの位相的性質を学習するグラフ畳み込みネットワークのための新しい枠組みを提案する。
本手法の設計原理は,GCNにおける通常の畳み込みパラメータだけでなく,これらのグラフにおける最も関連するトポロジ的関係を伝達する変換基底も学習する制約対象関数の最適化に基づいている。
骨格に基づく行動認識の課題に対して行われた実験は,手作りのグラフ設計や関連する作業と比較して,提案手法の優位性を示している。
関連論文リスト
- Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes [4.23480641508611]
グラフニューラルネットワーク(GNN)は理論上、1-Weisfeiler-Lehmanテストによって拘束される。
本研究では, トポロジ的メッセージパッシング過程において, グラフ内の単純な経路に着目し, 新たな視点を示す。
論文 参考訳(メタデータ) (2023-08-13T19:45:20Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - Learning Chebyshev Basis in Graph Convolutional Networks for
Skeleton-based Action Recognition [14.924672048447338]
スペクトルグラフ畳み込みネットワーク(GCN)は、ニューラルネットワークを任意の不規則領域に拡張することを目的とした、特に深いモデルである。
通常の畳み込みパラメータだけでなくラプラシア作用素も学習する新しいスペクトルGCNを導入する。
論文 参考訳(メタデータ) (2021-04-12T14:08:58Z) - Skeleton-based Hand-Gesture Recognition with Lightweight Graph
Convolutional Networks [14.924672048447338]
グラフ畳み込みネットワーク(GCN)は、グラフのような任意の不規則領域にディープラーニングを拡張することを目的としている。
GCN設計の一環として,入力グラフのトポロジを学習する新しい手法を提案する。
骨格をベースとした手の位置認識の課題に対する実験は, 学習したGCNの高効率性を示す。
論文 参考訳(メタデータ) (2021-04-09T09:06:53Z) - Action Recognition with Kernel-based Graph Convolutional Networks [14.924672048447338]
learning graph convolutional networks(gcns)は、ディープラーニングを任意の非正規ドメインに一般化することを目的としている。
再生カーネルヒルベルト空間(RKHS)における空間グラフ畳み込みを実現する新しいGCNフレームワークを提案する。
gcnモデルの特長は、学習グラフフィルタの受容野のノードと入力グラフのノードを明示的に認識せずに畳み込みを実現する能力にも関係しています。
論文 参考訳(メタデータ) (2020-12-28T11:02:51Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
本稿では,知識埋め込みに基づくグラフ畳み込みネットワーク(KE-GCN)という新しいフレームワークを提案する。
KE-GCNはグラフベースの信念伝播におけるグラフ畳み込みネットワーク(GCN)のパワーと高度な知識埋め込み手法の強みを組み合わせたものである。
理論的解析により、KE-GCNはいくつかのよく知られたGCN法のエレガントな統一を具体例として示している。
論文 参考訳(メタデータ) (2020-06-12T17:12:51Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
我々は、幾何学的深層学習の新興分野におけるイノベーションの原動力は、幾何が依然として主要な推進力であるべきだと論じている。
グラフニューラルネットワークとコンピュータグラフィックスとデータ近似モデルとの関係:放射基底関数(RBF)
完全連結層とグラフ畳み込み演算子を組み合わせた新しいビルディングブロックであるアフィンスキップ接続を導入する。
論文 参考訳(メタデータ) (2020-04-06T13:25:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network(GCN)は,グラフデータの学習と推論を行う新興技術である。
我々は、GCNの既存の設計がクロスフィーチャをモデリングし、クロスフィーチャが重要であるタスクやデータに対してGCNの効率を損なうことを論じている。
我々は、任意の次交叉特徴を、特徴次元と順序サイズに線形に複雑にモデル化した、クロスフィーチャーグラフ畳み込みという新しい演算子を設計する。
論文 参考訳(メタデータ) (2020-03-05T13:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。