論文の概要: Efficient Cutting Tool Wear Segmentation Based on Segment Anything Model
- arxiv url: http://arxiv.org/abs/2407.01211v1
- Date: Mon, 1 Jul 2024 11:57:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 21:49:58.224931
- Title: Efficient Cutting Tool Wear Segmentation Based on Segment Anything Model
- Title(参考訳): セグメンテーションモデルに基づく効率的な切削工具摩耗セグメンテーション
- Authors: Zongshuo Li, Ding Huo, Markus Meurer, Thomas Bergs,
- Abstract要約: 本稿では,U-Netを自動プロンプトジェネレータとして統合したセグメンテーションモデルに基づく効率的なツールウェアセグメンテーション手法を提案する。
その結果、U-Netに対するアプローチのアドバンテージを一貫して強調し、限られたトレーニングデータセットでも正確な摩耗セグメンテーションを実現する能力を強調した。
- 参考スコア(独自算出の注目度): 0.16666049492586987
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Tool wear conditions impact the surface quality of the workpiece and its final geometric precision. In this research, we propose an efficient tool wear segmentation approach based on Segment Anything Model, which integrates U-Net as an automated prompt generator to streamline the processes of tool wear detection. Our evaluation covered three Point-of-Interest generation methods and further investigated the effects of variations in training dataset sizes and U-Net training intensities on resultant wear segmentation outcomes. The results consistently highlight our approach's advantage over U-Net, emphasizing its ability to achieve accurate wear segmentation even with limited training datasets. This feature underscores its potential applicability in industrial scenarios where datasets may be limited.
- Abstract(参考訳): 工具摩耗条件は、加工品の表面品質と最終的な幾何学的精度に影響を与える。
本研究では,U-Netを自動プロンプトジェネレータとして統合し,ツールウェア検出のプロセスの合理化を図った,セグメンション任意のモデルに基づく効率的なツールウェアセグメンテーション手法を提案する。
本評価では,3つのポイント・オブ・インテリジェンス生成手法について検討し,トレーニングデータセットサイズとU-Netトレーニング強度の変動が摩耗セグメンテーション結果に及ぼす影響について検討した。
その結果、U-Netに対するアプローチのアドバンテージを一貫して強調し、限られたトレーニングデータセットでも正確な摩耗セグメンテーションを実現する能力を強調した。
この機能は、データセットが制限される可能性のある産業シナリオにおける潜在的な適用可能性を強調している。
関連論文リスト
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - WSESeg: Introducing a Dataset for the Segmentation of Winter Sports Equipment with a Baseline for Interactive Segmentation [13.38174941551702]
冬期スポーツ機器の10種類のカテゴリを対象とした,インスタンスセグメンテーションマスクを含む新しいデータセットを提案する。
我々は、これらのデータセット上でインタラクティブなセグメンテーション実験を行い、より効率的なラベリングの可能性を探る。
論文 参考訳(メタデータ) (2024-07-12T14:20:12Z) - Annotation-Efficient Polyp Segmentation via Active Learning [45.59503015577479]
アノテーション効率の良いポリプセグメンテーションのための深層能動的学習フレームワークを提案する。
実際に,ポリプの予測マップと背景領域の類似性を調べることで,各試料の不確実性を測定する。
提案手法は,パブリックデータセットと大規模社内データセットの双方において,競合相手と比較して,最先端性能を実現していることを示す。
論文 参考訳(メタデータ) (2024-03-21T12:25:17Z) - Early Fusion of Features for Semantic Segmentation [10.362589129094975]
本稿では,効率的な画像分割を実現するために,分類器ネットワークとリバースHRNetアーキテクチャを統合する新しいセグメンテーションフレームワークを提案する。
私たちの手法は、Mapillary Vistas、Cityscapes、CamVid、COCO、PASCAL-VOC2012など、いくつかのベンチマークデータセットで厳格にテストされています。
その結果,画像解析における様々な応用の可能性を示し,高いセグメンテーション精度を実現する上で,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-02-08T22:58:06Z) - PWISeg: Point-based Weakly-supervised Instance Segmentation for Surgical
Instruments [27.89003436883652]
我々はPWISeg (Point-based Weakly-supervised Instance) という,弱制御型手術器具セグメンテーション手法を提案する。
PWISegは、特徴点とバウンディングボックスの関係をモデル化するために、ポイント・ツー・ボックスとポイント・ツー・マスクのブランチを備えたFCNベースのアーキテクチャを採用している。
そこで本研究では,キー・ツー・マスク・ブランチを駆動し,より正確なセグメンテーション予測を生成するキー・ピクセル・アソシエーション・ロスとキー・ピクセル・アソシエーション・ロスを提案する。
論文 参考訳(メタデータ) (2023-11-16T11:48:29Z) - Open-vocabulary Panoptic Segmentation with Embedding Modulation [71.15502078615587]
オープン語彙のイメージセグメンテーションは、現実世界における重要な応用のために注目を集めている。
従来のクローズド・ボキャブラリ・セグメンテーション法は、新しいオブジェクトを特徴づけることができないが、最近のいくつかのオープン・ボキャブラリ試みは、満足のいく結果を得る。
オープン語彙パノプトンのための全能的でデータ効率のよいフレームワークであるOPSNetを提案する。
論文 参考訳(メタデータ) (2023-03-20T17:58:48Z) - CAM/CAD Point Cloud Part Segmentation via Few-Shot Learning [3.590084255075439]
我々は,CAM/CADにおける効果的部分分割のための数ショット学習に基づくアプローチを開発した。
その結果、一般的に達成不可能で網羅的な監視データセットの完全性に対する要求を減らすだけでなく、現実世界のアプリケーションの柔軟性も向上する。
論文 参考訳(メタデータ) (2022-07-04T06:06:46Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
本研究の目的は, 細粒度製品カテゴリを対象とした, 弱制御型マルチモーダル・インスタンスレベルの製品検索である。
まず、Product1Mデータセットをコントリビュートし、2つの実際のインスタンスレベルの検索タスクを定義します。
我々は、マルチモーダルデータから重要な概念情報を組み込むことができるより効果的なクロスモーダルモデルを訓練するために活用する。
論文 参考訳(メタデータ) (2022-06-17T15:40:45Z) - iSeg3D: An Interactive 3D Shape Segmentation Tool [48.784624011210475]
3次元形状のための効果的なアノテーションツールiSegを提案する。
我々の観察では、ほとんどの対象は有限原始形状の合成とみなすことができる。
構築したプリミティブな形状データに基づいてiSeg3Dモデルをトレーニングし、幾何学的事前知識を自己指導的に学習する。
論文 参考訳(メタデータ) (2021-12-24T08:15:52Z) - From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks [99.19183528305598]
ImageNet作成プロセスにおける特定の設計選択が、結果のデータセットの忠実性に与える影響について検討する。
私たちの分析では、ノイズの多いデータ収集パイプラインが、結果のベンチマークと、それがプロキシとして機能する実世界のタスクとの間に、体系的なミスアライメントをもたらす可能性があることを指摘しています。
論文 参考訳(メタデータ) (2020-05-22T17:39:16Z) - SideInfNet: A Deep Neural Network for Semi-Automatic Semantic
Segmentation with Side Information [83.03179580646324]
本稿では,新たなディープニューラルネットワークアーキテクチャであるSideInfNetを提案する。
画像から学習した機能とユーザアノテーションから抽出したサイド情報を統合する。
提案手法を評価するために,提案したネットワークを3つのセマンティックセグメンテーションタスクに適用し,ベンチマークデータセットに対する広範な実験を行った。
論文 参考訳(メタデータ) (2020-02-07T06:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。