Physics-Inspired Deep Learning and Transferable Models for Bridge Scour Prediction
- URL: http://arxiv.org/abs/2407.01258v3
- Date: Tue, 10 Sep 2024 03:07:19 GMT
- Title: Physics-Inspired Deep Learning and Transferable Models for Bridge Scour Prediction
- Authors: Negin Yousefpour, Bo Wang,
- Abstract summary: We introduce scour physics-inspired neural networks (SPINNs) for bridge scour prediction using deep learning.
SPINNs integrate physics-based, empirical equations into deep neural networks and are trained using site-specific historical scour monitoring data.
Despite variation in performance, SPINNs outperformed pure data-driven models in the majority of cases.
- Score: 2.451326684641447
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces scour physics-inspired neural networks (SPINNs), a hybrid physics-data-driven framework for bridge scour prediction using deep learning. SPINNs integrate physics-based, empirical equations into deep neural networks and are trained using site-specific historical scour monitoring data. Long-short Term Memory Network (LSTM) and Convolutional Neural Network (CNN) are considered as the base deep learning (DL) models. We also explore transferable/general models, trained by aggregating datasets from a cluster of bridges, versus the site/bridge-specific models. Despite variation in performance, SPINNs outperformed pure data-driven models in the majority of cases. In some bridge cases, SPINN reduced forecasting errors by up to 50 percent. The pure data-driven models showed better transferability compared to hybrid models. The transferable DL models particularly proved effective for bridges with limited data. In addition, the calibrated time-dependent empirical equations derived from SPINNs showed great potential for maximum scour depth estimation, providing more accurate predictions compared to commonly used HEC-18 model. Comparing SPINNs with traditional empirical models indicates substantial improvements in scour prediction accuracy. This study can pave the way for further exploration of physics-inspired machine learning methods for scour prediction.
Related papers
- Application of Long-Short Term Memory and Convolutional Neural Networks for Real-Time Bridge Scour Prediction [0.0]
We exploit the power of deep learning algorithms to forecast scour depth variations around bridge piers based on historical sensor monitoring data.
We investigated the performance of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) models for real-time scour forecasting.
arXiv Detail & Related papers (2024-04-25T12:04:36Z) - Online model error correction with neural networks: application to the
Integrated Forecasting System [0.27930367518472443]
We develop a model error correction for the European Centre for Medium-Range Weather Forecasts using a neural network.
The network is pre-trained offline using a large dataset of operational analyses and analysis increments.
It is then integrated into the IFS within the Object-Oriented Prediction System (OOPS) so as to be used in data assimilation and forecast experiments.
arXiv Detail & Related papers (2024-03-06T13:36:31Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Inferring Data Preconditions from Deep Learning Models for Trustworthy
Prediction in Deployment [25.527665632625627]
It is important to reason about the trustworthiness of the model's predictions with unseen data during deployment.
Existing methods for specifying and verifying traditional software are insufficient for this task.
We propose a novel technique that uses rules derived from neural network computations to infer data preconditions.
arXiv Detail & Related papers (2024-01-26T03:47:18Z) - Optimizing Dense Feed-Forward Neural Networks [0.0]
We propose a novel feed-forward neural network constructing method based on pruning and transfer learning.
Our approach can compress the number of parameters by more than 70%.
We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network.
arXiv Detail & Related papers (2023-12-16T23:23:16Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Boosted Dynamic Neural Networks [53.559833501288146]
A typical EDNN has multiple prediction heads at different layers of the network backbone.
To optimize the model, these prediction heads together with the network backbone are trained on every batch of training data.
Treating training and testing inputs differently at the two phases will cause the mismatch between training and testing data distributions.
We formulate an EDNN as an additive model inspired by gradient boosting, and propose multiple training techniques to optimize the model effectively.
arXiv Detail & Related papers (2022-11-30T04:23:12Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.