論文の概要: Formal Verification of Deep Neural Networks for Object Detection
- arxiv url: http://arxiv.org/abs/2407.01295v5
- Date: Mon, 18 Nov 2024 09:54:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:29:14.889652
- Title: Formal Verification of Deep Neural Networks for Object Detection
- Title(参考訳): 物体検出のためのディープニューラルネットワークの形式的検証
- Authors: Yizhak Y. Elboher, Avraham Raviv, Yael Leibovich Weiss, Omer Cohen, Roy Assa, Guy Katz, Hillel Kugler,
- Abstract要約: ディープニューラルネットワーク(DNN)は、現実世界のアプリケーションで広く使われているが、エラーや敵攻撃に弱いままである。
この研究は形式的検証を、より複雑なエホブジェクト検出モデルの領域に拡張する。
- 参考スコア(独自算出の注目度): 1.947473271879451
- License:
- Abstract: Deep neural networks (DNNs) are widely used in real-world applications, yet they remain vulnerable to errors and adversarial attacks. Formal verification offers a systematic approach to identify and mitigate these vulnerabilities, enhancing model robustness and reliability. While most existing verification methods focus on image classification models, this work extends formal verification to the more complex domain of emph{object detection} models. We propose a formulation for verifying the robustness of such models and demonstrate how state-of-the-art verification tools, originally developed for classification, can be adapted for this purpose. Our experiments, conducted on various datasets and networks, highlight the ability of formal verification to uncover vulnerabilities in object detection models, underscoring the need to extend verification efforts to this domain. This work lays the foundation for further research into formal verification across a broader range of computer vision applications.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、現実世界のアプリケーションで広く使われているが、エラーや敵攻撃に弱いままである。
形式的検証は、これらの脆弱性を特定して軽減するための体系的なアプローチを提供し、モデルの堅牢性と信頼性を高めます。
既存の検証手法の多くは画像分類モデルに重点を置いているが、この研究はより複雑なemph{object detection}モデルの領域に形式的検証を拡張している。
本稿では,このようなモデルのロバスト性を検証するための定式化を提案し,その目的のために,もともと分類のために開発された最先端の検証ツールをどのように適用できるかを実証する。
さまざまなデータセットやネットワーク上で実施した本実験では,オブジェクト検出モデルの脆弱性を明らかにするための形式的検証機能を強調し,検証作業をこの領域に拡張する必要性を強調した。
この研究は、幅広いコンピュータビジョンアプリケーションにわたる形式的検証に関するさらなる研究の基礎を築いた。
関連論文リスト
- Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - Integrity Monitoring of 3D Object Detection in Automated Driving Systems using Raw Activation Patterns and Spatial Filtering [12.384452095533396]
ディープニューラルネットワーク(DNN)モデルは、自動運転システム(ADS)における物体検出に広く利用されている。
しかし、そのようなモデルは、重大な安全性に影響を及ぼす可能性のあるエラーを起こしやすい。
このようなエラーを検知することを目的とした検査・自己評価モデルは、ADSの安全な配置において最重要となる。
論文 参考訳(メタデータ) (2024-05-13T10:03:03Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
ディープラーニングモデルは、誤った分類決定を行うためにモデルを誤解させる可能性のあるデータインスタンスに対して脆弱であることがわかった。
本調査では,ネットワーク侵入検出分野における敵機械学習のさまざまな側面を利用した研究について検討する。
論文 参考訳(メタデータ) (2021-12-06T19:10:23Z) - Exploiting Multi-Object Relationships for Detecting Adversarial Attacks
in Complex Scenes [51.65308857232767]
ディープニューラルネットワーク(DNN)をデプロイするビジョンシステムは、敵の例に弱いことが知られている。
近年の研究では、入力データの固有成分のチェックは、敵攻撃を検出するための有望な方法であることが示された。
言語モデルを用いてコンテキスト整合性チェックを行う新しい手法を開発した。
論文 参考訳(メタデータ) (2021-08-19T00:52:10Z) - Inverting and Understanding Object Detectors [15.207501110589924]
本稿では,最新の物体検出法を理解し,レイアウトインバージョンに対する最適化に基づくアプローチを開発するために,インバージョンを主要なツールとして用いることを提案する。
我々は, 種々の現代の物体検出器にレイアウト反転技術を適用して, 検出器の興味深い特性を明らかにした。
論文 参考訳(メタデータ) (2021-06-26T03:31:59Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
近年のディープラーニングの進歩は、様々なコンピュータビジョンアプリケーションのための正確で効率的なモデルの開発につながっている。
高度に正確なモデルを学ぶには、大量の注釈付きイメージを持つデータセットの可用性に依存する。
このため、ラベルスカースデータセットに視覚的に異なる画像がある場合、モデルの性能は大幅に低下する。
論文 参考訳(メタデータ) (2021-05-27T23:34:06Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z) - Understanding Object Detection Through An Adversarial Lens [14.976840260248913]
本稿では, 対向レンズ下での深部物体検出装置の脆弱性を分析し評価するための枠組みを提案する。
提案手法は, リアルタイムオブジェクト検出システムにおいて, 対向行動やリスクを解析するための方法論的ベンチマークとして機能することが実証された。
我々は、このフレームワークが、現実世界のアプリケーションにデプロイされるディープオブジェクト検出器のセキュリティリスクと敵の堅牢性を評価するツールとしても役立つと推測する。
論文 参考訳(メタデータ) (2020-07-11T18:41:47Z) - Adaptive Object Detection with Dual Multi-Label Prediction [78.69064917947624]
本稿では,適応オブジェクト検出のための新しいエンド・ツー・エンドの非教師付き深部ドメイン適応モデルを提案する。
モデルはマルチラベル予測を利用して、各画像内の対象カテゴリ情報を明らかにする。
本稿では,オブジェクト検出を支援するための予測整合正則化機構を提案する。
論文 参考訳(メタデータ) (2020-03-29T04:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。