論文の概要: Hyperspectral Pansharpening: Critical Review, Tools and Future Perspectives
- arxiv url: http://arxiv.org/abs/2407.01355v1
- Date: Mon, 1 Jul 2024 15:10:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 21:10:33.542959
- Title: Hyperspectral Pansharpening: Critical Review, Tools and Future Perspectives
- Title(参考訳): Hyperspectral Pansharpening: 批判的レビュー、ツール、今後の展望
- Authors: Matteo Ciotola, Giuseppe Guarino, Gemine Vivone, Giovanni Poggi, Jocelyn Chanussot, Antonio Plaza, Giuseppe Scarpa,
- Abstract要約: 高分解能パンクロマティックバンドと低分解能ハイパースペクトル画像とを融合させて、空間領域とスペクトル領域の両方で高分解能の画像を得る。
本稿では,新しい手法の迅速な開発と正確な評価のための包括的枠組みの欠如に対処する。
- 参考スコア(独自算出の注目度): 23.833438162665715
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hyperspectral pansharpening consists of fusing a high-resolution panchromatic band and a low-resolution hyperspectral image to obtain a new image with high resolution in both the spatial and spectral domains. These remote sensing products are valuable for a wide range of applications, driving ever growing research efforts. Nonetheless, results still do not meet application demands. In part, this comes from the technical complexity of the task: compared to multispectral pansharpening, many more bands are involved, in a spectral range only partially covered by the panchromatic component and with overwhelming noise. However, another major limiting factor is the absence of a comprehensive framework for the rapid development and accurate evaluation of new methods. This paper attempts to address this issue. We started by designing a dataset large and diverse enough to allow reliable training (for data-driven methods) and testing of new methods. Then, we selected a set of state-of-the-art methods, following different approaches, characterized by promising performance, and reimplemented them in a single PyTorch framework. Finally, we carried out a critical comparative analysis of all methods, using the most accredited quality indicators. The analysis highlights the main limitations of current solutions in terms of spectral/spatial quality and computational efficiency, and suggests promising research directions. To ensure full reproducibility of the results and support future research, the framework (including codes, evaluation procedures and links to the dataset) is shared on https://github.com/matciotola/hyperspectral_pansharpening_toolbox, as a single Python-based reference benchmark toolbox.
- Abstract(参考訳): 高分解能パンクロマティックバンドと低分解能ハイパースペクトル画像とを融合させて、空間領域とスペクトル領域の両方で高分解能の画像を得る。
これらのリモートセンシング製品は、広範囲のアプリケーションに価値があり、研究努力をずっと加速させています。
それでも、結果はまだアプリケーション要求を満たしていない。
これは、マルチスペクトルのパンシャーピングと比較して、パンクロマティック成分によって部分的にカバーされ、圧倒的なノイズを伴うスペクトル範囲において、より多くのバンドが関与する、というタスクの技術的な複雑さに由来する。
しかし、もう一つの大きな制限要因は、新しい手法の迅速な開発と正確な評価のための包括的なフレームワークがないことである。
本稿ではこの問題に対処しようと試みる。
私たちはまず、信頼性の高いトレーニング(データ駆動方式)と新しいメソッドのテストを可能にするために、大きくて多様なデータセットを設計することから始めました。
そこで我々は,期待できる性能を特徴とする,最先端の手法のセットを選択し,それを単一のPyTorchフレームワークで再実装した。
最後に、最も認証された品質指標を用いて、全ての手法の批判的比較分析を行った。
この分析は、スペクトル/空間品質と計算効率の観点から、現在のソリューションの主な限界を強調し、有望な研究方向性を提案する。
結果の完全な再現性を保証するために、フレームワーク(コード、評価手順、データセットへのリンクを含む)は、単一のPythonベースのリファレンスベンチマークツールボックスとしてhttps://github.com/matciotola/hyperspectral_pansharpening_toolboxで共有される。
関連論文リスト
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - PanBench: Towards High-Resolution and High-Performance Pansharpening [16.16122045172545]
パンシャーペニングでは、高解像度のマルチスペクトル画像と高解像度のパンクロマティック画像を統合することで、高解像度で多スペクトル情報を保持するイメージを合成する。
本稿では,主眼衛星を含む高解像度マルチシーンデータセットであるPanBenchを紹介する。
高忠実度合成を実現するために,Pansharpening のための Cascaded Multiscale Fusion Network (CMFNet) を提案する。
論文 参考訳(メタデータ) (2023-11-20T10:57:23Z) - Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation [4.246657212475299]
ハイパースペクトルパンシャーピングのための新しい深層学習法を提案する。
バンドワイド適応方式でネストされた単純な単一バンドアン教師付きパンシャーペニングモデルを継承する。
提案手法は,従来の学習基準法と深層学習基準法の両方より優れた結果が得られる。
論文 参考訳(メタデータ) (2023-11-11T08:53:54Z) - For A More Comprehensive Evaluation of 6DoF Object Pose Tracking [22.696375341994035]
上記の問題に対処するために、統一されたベンチマークに貢献する。
YCBVのより正確なアノテーションとして,多視点多目的グローバルポーズ改善法を提案する。
実験では,リアルな半合成データセットを用いて,提案手法の精度と信頼性を検証した。
論文 参考訳(メタデータ) (2023-09-14T15:35:08Z) - COMICS: End-to-end Bi-grained Contrastive Learning for Multi-face Forgery Detection [56.7599217711363]
顔偽造認識法は一度に1つの顔しか処理できない。
ほとんどの顔偽造認識法は一度に1つの顔しか処理できない。
マルチフェイスフォージェリ検出のためのエンドツーエンドフレームワークであるCOMICSを提案する。
論文 参考訳(メタデータ) (2023-08-03T03:37:13Z) - Towards Robust GAN-generated Image Detection: a Multi-view Completion
Representation [27.483031588071942]
GAN生成画像検出は、ディープフェイクのようなマシン合成画像操作の悪意ある使用に対する最初の防御線となっている。
本稿では,新しい多視点画像補完表現に基づくロバスト検出フレームワークを提案する。
我々は,6つのGANに対して異なる解像度でフレームワークの一般化能力を評価し,その幅広い摂動攻撃に対する堅牢性を評価する。
論文 参考訳(メタデータ) (2023-06-02T08:38:02Z) - Time to Focus: A Comprehensive Benchmark Using Time Series Attribution
Methods [4.9449660544238085]
本論文は時系列解析といくつかの最先端属性手法のベンチマークに焦点をあてる。
本実験では, 勾配および摂動に基づく帰属法について検討した。
その結果,最も適した帰属法を選択することは,所望のユースケースと強く相関していることが示唆された。
論文 参考訳(メタデータ) (2022-02-08T10:06:13Z) - Comprehensive Studies for Arbitrary-shape Scene Text Detection [78.50639779134944]
ボトムアップに基づくシーンテキスト検出のための統合フレームワークを提案する。
統一されたフレームワークの下では、非コアモジュールの一貫性のある設定が保証されます。
包括的調査と精巧な分析により、以前のモデルの利点と欠点を明らかにしている。
論文 参考訳(メタデータ) (2021-07-25T13:18:55Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
現在のCNNベースの検出器は、メソッド固有の色テクスチャに過度に適合するため、一般化に失敗する傾向にある。
フェースフォージェリ検出に高周波雑音を用いることを提案する。
1つは、複数のスケールで高周波ノイズを抽出するマルチスケールの高周波特徴抽出モジュールである。
2つ目は、低レベルRGB特徴抽出器を導く残差誘導空間注意モジュールで、新しい視点からフォージェリートレースにもっと集中する。
論文 参考訳(メタデータ) (2021-03-23T08:19:21Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
まず,学習した画像の圧縮方法に関する総合的な文献調査を行う。
本稿では,最先端の学習画像圧縮手法のマイルストーンについて述べるとともに,既存の幅広い作品について概観し,その歴史的開発ルートについて考察する。
エントロピー推定と信号再構成のための粗大な超高次モデルを導入することにより、速度歪み性能の向上を実現する。
論文 参考訳(メタデータ) (2020-02-10T13:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。