tPARAFAC2: Tracking evolving patterns in (incomplete) temporal data
- URL: http://arxiv.org/abs/2407.01356v2
- Date: Mon, 05 May 2025 16:35:36 GMT
- Title: tPARAFAC2: Tracking evolving patterns in (incomplete) temporal data
- Authors: Christos Chatzis, Carla Schenker, Max Pfeffer, Evrim Acar,
- Abstract summary: We introduce t(emporal)PARAFAC2, which utilizes smoothness temporal regularization on the evolving factors.<n>We show that tPARAFAC2 can extract the underlying evolving patterns more accurately compared to the state-of-the-art in the presence of high amounts of noise and missing data.
- Score: 0.7285444492473742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor factorizations have been widely used for the task of uncovering patterns in various domains. Often, the input is time-evolving, shifting the goal to tracking the evolution of the underlying patterns instead. To adapt to this more complex setting, existing methods incorporate temporal regularization but they either have overly constrained structural requirements or lack uniqueness which is crucial for interpretation. In this paper, in order to capture the underlying evolving patterns, we introduce t(emporal)PARAFAC2, which utilizes temporal smoothness regularization on the evolving factors. Previously, Alternating Optimization (AO) and Alternating Direction Method of Multipliers (ADMM)-based algorithmic approach has been introduced to fit the PARAFAC2 model to fully observed data. In this paper, we extend this algorithmic framework to the case of partially observed data and use it to fit the tPARAFAC2 model to complete and incomplete datasets with the goal of revealing evolving patterns. Our numerical experiments on simulated datasets demonstrate that tPARAFAC2 can extract the underlying evolving patterns more accurately compared to the state-of-the-art in the presence of high amounts of noise and missing data. Using two real datasets, we also demonstrate the effectiveness of the algorithmic approach in terms of handling missing data and tPARAFAC2 model in terms of revealing evolving patterns. The paper provides an extensive comparison of different approaches for handling missing data within the proposed framework, and discusses both the advantages and limitations of tPARAFAC2 model.
Related papers
- C2-Evo: Co-Evolving Multimodal Data and Model for Self-Improving Reasoning [78.36259648527401]
C2-Evo is an automatic, closed-loop self-improving framework that jointly evolves both training data and model capabilities.<n>We show that C2-Evo consistently obtains considerable performance gains across multiple mathematical reasoning benchmarks.
arXiv Detail & Related papers (2025-07-22T12:27:08Z) - Learning Time-Aware Causal Representation for Model Generalization in Evolving Domains [50.66049136093248]
We develop a time-aware structural causal model (SCM) that incorporates dynamic causal factors and the causal mechanism drifts.<n>We show that our method can yield the optimal causal predictor for each time domain.<n>Results on both synthetic and real-world datasets exhibit that SYNC can achieve superior temporal generalization performance.
arXiv Detail & Related papers (2025-06-21T14:05:37Z) - Transfer Learning for High-dimensional Reduced Rank Time Series Models [0.0]
We focus on transfer learning for sequences of observations with temporal dependencies and a more intricate model parameter structure.<n>We propose a new transfer learning algorithm tailored for estimating high-dimensional VAR models characterized by low-rank and sparse structures.
arXiv Detail & Related papers (2025-04-22T08:15:59Z) - Preference-Based Alignment of Discrete Diffusion Models [14.874943508610857]
We introduce Discrete Diffusion DPO (D2-DPO), the first adaptation of Direct Preference Optimization (DPO) to discrete diffusion models formulated as continuous-time Markov chains.<n>Our approach derives a novel loss function that directly fine-tunes the generative process using preference data while preserving fidelity to a reference distribution.<n>Our results highlight that D2-DPO enables controlled fine-tuning without requiring explicit reward models, making it a practical alternative to reinforcement learning-based approaches.
arXiv Detail & Related papers (2025-03-11T11:07:35Z) - Understanding the Limits of Deep Tabular Methods with Temporal Shift [28.738848567072004]
We introduce a plug-and-play temporal embedding method based on Fourier series expansion to learn and incorporate temporal patterns.
Our experiments demonstrate that this temporal embedding, combined with the improved training protocol, provides a more effective and robust framework for learning from temporal data.
arXiv Detail & Related papers (2025-02-27T16:48:53Z) - dCMF: Learning interpretable evolving patterns from temporal multiway data [0.7285444492473742]
We bridge the gap between tensor factorizations and dynamical modeling by exploring the relationship between LDS, Coupled Matrix Factorizations (CMF) and the PARAFAC2 model.
We propose a time-aware coupled factorization model called d(ynamical)CMF that constrains the temporal evolution of the latent factors to adhere to a specific LDS structure.
arXiv Detail & Related papers (2025-02-26T18:04:01Z) - Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior.
We revisit SR from a novel information-theoretic perspective and find that sequential modeling methods fail to adequately capture randomness and unpredictability of user behavior.
Inspired by fuzzy information processing theory, this paper introduces the fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests.
arXiv Detail & Related papers (2024-10-31T14:52:01Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model [11.281386703572842]
TimeDiT is a diffusion transformer model that combines temporal dependency learning with probabilistic sampling.
TimeDiT employs a unified masking mechanism to harmonize the training and inference process across diverse tasks.
Our systematic evaluation demonstrates TimeDiT's effectiveness both in fundamental tasks, i.e., forecasting and imputation, through zero-shot/fine-tuning.
arXiv Detail & Related papers (2024-09-03T22:31:57Z) - RHiOTS: A Framework for Evaluating Hierarchical Time Series Forecasting Algorithms [0.393259574660092]
RHiOTS is designed to assess the robustness of hierarchical time series forecasting models and algorithms on real-world datasets.
RHiOTS incorporates an innovative visualization component, turning complex, multidimensional robustness evaluation results into intuitive, easily interpretable visuals.
Our findings show that traditional statistical methods are more robust than state-of-the-art deep learning algorithms, except when the transformation effect is highly disruptive.
arXiv Detail & Related papers (2024-08-06T18:52:15Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFun model represents a novel approach to TPPs that revolves around the Cumulative Distribution Function (CDF)
Our approach addresses several critical issues inherent in traditional TPP modeling.
Our contributions encompass the introduction of a pioneering CDF-based TPP model, the development of a methodology for incorporating past event information into future event prediction.
arXiv Detail & Related papers (2024-02-01T07:21:30Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
We present CASTOR, a novel method that concurrently learns the Directed Acyclic Graph (DAG) for each regime.
We establish the identifiability of the regimes and DAGs within our framework.
Experiments show that CASTOR consistently outperforms existing causal discovery models.
arXiv Detail & Related papers (2023-11-02T17:26:49Z) - A Time-aware tensor decomposition for tracking evolving patterns [0.7958824725263767]
Time-evolving data sets can often be arranged as a higher-order tensor with one of the modes being the time mode.
While tensor factorizations have been successfully used to capture the underlying patterns in such higher-order data sets, the temporal aspect is often ignored.
We propose temporal PARAFAC2: a PARAFAC2-based tensor factorization method with temporal regularization to extract gradually evolving patterns from temporal data.
arXiv Detail & Related papers (2023-08-14T13:13:50Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Toward Learning Robust and Invariant Representations with Alignment
Regularization and Data Augmentation [76.85274970052762]
This paper is motivated by a proliferation of options of alignment regularizations.
We evaluate the performances of several popular design choices along the dimensions of robustness and invariance.
We also formally analyze the behavior of alignment regularization to complement our empirical study under assumptions we consider realistic.
arXiv Detail & Related papers (2022-06-04T04:29:19Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - An AO-ADMM approach to constraining PARAFAC2 on all modes [6.3172660601651]
We propose an algorithm for fitting PARAFAC2 based on alternating optimization with the alternating direction method of multipliers (AO-ADMM)
We show that the proposed PARAFAC2 AO-ADMM approach allows for flexible constraints, recovers the underlying patterns accurately, and is computationally efficient compared to the state-of-the-art.
arXiv Detail & Related papers (2021-10-04T09:39:01Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
Heterogeneity and irregularity of multi-source data sets present a significant challenge to time-series analysis.
In this work, we design a novel architecture, PIETS, to model heterogeneous time-series.
We show that PIETS is able to effectively model heterogeneous temporal data and outperforms other state-of-the-art approaches in the prediction task.
arXiv Detail & Related papers (2021-09-30T20:01:19Z) - Variational Conditional Dependence Hidden Markov Models for
Skeleton-Based Action Recognition [7.9603223299524535]
This paper revisits conventional sequential modeling approaches, aiming to address the problem of capturing time-varying temporal dependency patterns.
We propose a different formulation of HMMs, whereby the dependence on past frames is dynamically inferred from the data.
We derive a tractable inference algorithm based on the forward-backward algorithm.
arXiv Detail & Related papers (2020-02-13T23:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.