論文の概要: Free-text Rationale Generation under Readability Level Control
- arxiv url: http://arxiv.org/abs/2407.01384v2
- Date: Wed, 16 Oct 2024 01:52:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:39:07.225506
- Title: Free-text Rationale Generation under Readability Level Control
- Title(参考訳): 可読性レベル制御による自由文ラジエーレ生成
- Authors: Yi-Sheng Hsu, Nils Feldhus, Sherzod Hakimov,
- Abstract要約: 我々は,可読性レベル制御の影響下で,大規模言語モデル (LLM) が合理的生成をいかに行うかを検討する。
要求された可読性は、しばしば測定されたテキストの複雑さと一致しないが、説明はそのような命令に適応できる。
我々のアノテータは、すべての可読性レベルにおける理性に対する概ね満足のいく印象を確認します。
- 参考スコア(独自算出の注目度): 6.338124510580766
- License:
- Abstract: Free-text rationales justify model decisions in natural language and thus become likable and accessible among approaches to explanation across many tasks. However, their effectiveness can be hindered by misinterpretation and hallucination. As a perturbation test, we investigate how large language models (LLMs) perform rationale generation under the effects of readability level control, i.e., being prompted for an explanation targeting a specific expertise level, such as sixth grade or college. We find that explanations are adaptable to such instruction, though the requested readability is often misaligned with the measured text complexity according to traditional readability metrics. Furthermore, the generated rationales tend to feature medium level complexity, which correlates with the measured quality using automatic metrics. Finally, our human annotators confirm a generally satisfactory impression on rationales at all readability levels, with high-school-level readability being most commonly perceived and favored.
- Abstract(参考訳): 自由文理理性は自然言語におけるモデル決定を正当化し、多くのタスクをまたいだ説明のアプローチにおいて、自由でアクセスしやすいものとなる。
しかし、その効果は誤解や幻覚によって妨げられる。
摂動試験として,大言語モデル(LLM)が可読性レベル制御(可読性レベル制御)の影響下で合理的な生成を行うかを検討する。
従来の可読性指標では,要求された可読性はテキストの複雑さと誤一致することが多かったが,説明はそのような命令に適応できることがわかった。
さらに、生成された合理性は、自動メトリクスを使用して測定された品質と相関する中程度の複雑さを特徴付ける傾向にある。
最後に、人間の注釈は、すべての可読性レベルにおける理性に対する概ね満足のいく印象を確認し、高校レベルの可読性が最も認識され、好まれる。
関連論文リスト
- Analysing Zero-Shot Readability-Controlled Sentence Simplification [54.09069745799918]
本研究では,異なる種類の文脈情報が,所望の可読性を持つ文を生成するモデルの能力に与える影響について検討する。
結果から,全ての試験されたモデルは,原文の制限や特徴のため,文の簡略化に苦慮していることがわかった。
実験では、RCTSに合わせたより良い自動評価指標の必要性も強調した。
論文 参考訳(メタデータ) (2024-09-30T12:36:25Z) - Generating Summaries with Controllable Readability Levels [67.34087272813821]
テキストの複雑さ、主題、読者の背景知識など、可読性レベルに影響を与える要因がいくつかある。
現在のテキスト生成アプローチでは制御が洗練されておらず、結果として読者の習熟度にカスタマイズされないテキストが作られる。
可読性を制御するための3つのテキスト生成手法を開発した。命令ベースの可読性制御,要求される可読性と観測される可読性の間のギャップを最小限に抑える強化学習,および,ルックアヘッドを用いて今後の復号化ステップの可読性を評価する復号手法である。
論文 参考訳(メタデータ) (2023-10-16T17:46:26Z) - More Than Words: Towards Better Quality Interpretations of Text
Classifiers [16.66535643383862]
MLモデルの入力インタフェースを考えると、トークンベースの解釈性は便利な第1選択であるが、あらゆる状況において最も効果的ではないことを示す。
1)ランダム化テストにより測定されるほど頑健であり,2)SHAPのような近似に基づく手法を用いた場合の変動性が低く,3)言語的コヒーレンスがより高い水準にある場合の人間には理解できない。
論文 参考訳(メタデータ) (2021-12-23T10:18:50Z) - Plot-guided Adversarial Example Construction for Evaluating Open-domain
Story Generation [23.646133241521614]
学習可能な評価指標は、人間の判断との相関性を高めることで、より正確な評価を約束しています。
以前の作品は、可能なシステムの欠点を模倣するために、テキスト理論的に操作可能な実例に依存していた。
本研究では,ストーリー生成に使用する制御可能な要因の構造化された表現であるエムプロットを用いて,より包括的でわかりにくいストーリーの集合を生成することで,これらの課題に対処することを提案する。
論文 参考訳(メタデータ) (2021-04-12T20:19:24Z) - Lexically-constrained Text Generation through Commonsense Knowledge
Extraction and Injection [62.071938098215085]
我々は、ある入力概念のセットに対して妥当な文を生成することを目的としているcommongenベンチマークに焦点を当てる。
生成したテキストの意味的正しさを高めるための戦略を提案する。
論文 参考訳(メタデータ) (2020-12-19T23:23:40Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
イメージキャプションや機械翻訳などのタスクを評価するデファクトメトリクスとして、いくつかの一般的な指標が残っている。
これは、使いやすさが原因でもあり、また、研究者がそれらを見て解釈する方法を知りたがっているためでもある。
本稿では,モデルの自動評価方法について,コミュニティにより慎重に検討するよう促す。
論文 参考訳(メタデータ) (2020-10-26T13:57:20Z) - Measuring Association Between Labels and Free-Text Rationales [60.58672852655487]
解釈可能なNLPでは、説明された例に対するモデルの意思決定プロセスを反映した忠実な理性が必要です。
情報抽出型タスクに対する忠実な抽出合理化のための既存のモデルであるパイプラインは、自由テキスト合理化を必要とするタスクに確実に拡張されないことを示す。
我々は、信頼が確立されていない自由文合理化のための、広く使われている高性能モデルのクラスである、共同予測と合理化のモデルに目を向ける。
論文 参考訳(メタデータ) (2020-10-24T03:40:56Z) - A Controllable Model of Grounded Response Generation [122.7121624884747]
現在のエンドツーエンドのニューラルネットワークモデルは、応答生成プロセスにセマンティックコントロールを課す柔軟性を本質的に欠いている。
我々は制御可能な接地応答生成(CGRG)と呼ばれるフレームワークを提案する。
このフレームワークを用いることで、会話のようなRedditデータセットでトレーニングされた、新しいインダクティブアテンション機構を備えたトランスフォーマーベースのモデルが、強力な生成ベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2020-05-01T21:22:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。