Semantic Compositions Enhance Vision-Language Contrastive Learning
- URL: http://arxiv.org/abs/2407.01408v1
- Date: Mon, 1 Jul 2024 15:58:20 GMT
- Title: Semantic Compositions Enhance Vision-Language Contrastive Learning
- Authors: Maxwell Aladago, Lorenzo Torresani, Soroush Vosoughi,
- Abstract summary: We show that the zero-shot classification and retrieval capabilities of CLIP-like models can be improved significantly through the introduction of semantically composite examples during pretraining.
Our method fuses the captions and blends 50% of each image to form a new composite sample.
The benefits of CLIP-C are particularly pronounced in settings with relatively limited pretraining data.
- Score: 46.985865191341944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of vision-language contrastive learning, models such as CLIP capitalize on matched image-caption pairs as positive examples and leverage within-batch non-matching pairs as negatives. This approach has led to remarkable outcomes in zero-shot image classification, cross-modal retrieval, and linear evaluation tasks. We show that the zero-shot classification and retrieval capabilities of CLIP-like models can be improved significantly through the introduction of semantically composite examples during pretraining. Inspired by CutMix in vision categorization, we create semantically composite image-caption pairs by merging elements from two distinct instances in the dataset via a novel procedure. Our method fuses the captions and blends 50% of each image to form a new composite sample. This simple technique (termed CLIP-C for CLIP Compositions), devoid of any additional computational overhead or increase in model parameters, significantly improves zero-shot image classification and cross-modal retrieval. The benefits of CLIP-C are particularly pronounced in settings with relatively limited pretraining data.
Related papers
- TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives [65.82577305915643]
Contrastive Language-Image Pretraining (CLIP) models maximize the mutual information between text and visual modalities to learn representations.
We show that generating hard'' negative captions via in-context learning and corresponding negative images with text-to-image generators offers a solution.
We demonstrate that our method, named TripletCLIP, enhances the compositional capabilities of CLIP, resulting in an absolute improvement of over 9% on the SugarCrepe benchmark.
arXiv Detail & Related papers (2024-11-04T19:24:59Z) - CLIP Adaptation by Intra-modal Overlap Reduction [1.2277343096128712]
We analyse the intra-modal overlap in image space in terms of embedding representation.
We train a lightweight adapter on a generic set of samples from the Google Open Images dataset.
arXiv Detail & Related papers (2024-09-17T16:40:58Z) - SILC: Improving Vision Language Pretraining with Self-Distillation [113.50400246862056]
We introduce SILC, a novel framework for vision language pretraining.
SILC improves image-text contrastive learning with the simple addition of local-to-global correspondence learning by self-distillation.
We show that distilling local image features from an exponential moving average (EMA) teacher model significantly improves model performance on dense predictions tasks like detection and segmentation.
arXiv Detail & Related papers (2023-10-20T08:44:47Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - No Token Left Behind: Explainability-Aided Image Classification and
Generation [79.4957965474334]
We present a novel explainability-based approach, which adds a loss term to ensure that CLIP focuses on all relevant semantic parts of the input.
Our method yields an improvement in the recognition rate, without additional training or fine-tuning.
arXiv Detail & Related papers (2022-04-11T07:16:39Z) - Robust Cross-Modal Representation Learning with Progressive
Self-Distillation [7.676408770854477]
The learning objective of vision-language approach of CLIP does not effectively account for the noisy many-to-many correspondences found in web-harvested image captioning datasets.
We introduce a novel training framework based on cross-modal contrastive learning that uses progressive self-distillation and soft image-text alignments to more efficiently learn robust representations from noisy data.
arXiv Detail & Related papers (2022-04-10T03:28:18Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
It is unclear how to make zero-shot recognition working well on broader vision problems, such as object detection and semantic segmentation.
In this paper, we target for zero-shot semantic segmentation, by building it on an off-the-shelf pre-trained vision-language model, i.e., CLIP.
Our experimental results show that this simple framework surpasses previous state-of-the-arts by a large margin.
arXiv Detail & Related papers (2021-12-29T18:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.