Robust Cross-Modal Representation Learning with Progressive
Self-Distillation
- URL: http://arxiv.org/abs/2204.04588v1
- Date: Sun, 10 Apr 2022 03:28:18 GMT
- Title: Robust Cross-Modal Representation Learning with Progressive
Self-Distillation
- Authors: Alex Andonian, Shixing Chen, Raffay Hamid
- Abstract summary: The learning objective of vision-language approach of CLIP does not effectively account for the noisy many-to-many correspondences found in web-harvested image captioning datasets.
We introduce a novel training framework based on cross-modal contrastive learning that uses progressive self-distillation and soft image-text alignments to more efficiently learn robust representations from noisy data.
- Score: 7.676408770854477
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The learning objective of vision-language approach of CLIP does not
effectively account for the noisy many-to-many correspondences found in
web-harvested image captioning datasets, which contributes to its compute and
data inefficiency. To address this challenge, we introduce a novel training
framework based on cross-modal contrastive learning that uses progressive
self-distillation and soft image-text alignments to more efficiently learn
robust representations from noisy data. Our model distills its own knowledge to
dynamically generate soft-alignment targets for a subset of images and captions
in every minibatch, which are then used to update its parameters. Extensive
evaluation across 14 benchmark datasets shows that our method consistently
outperforms its CLIP counterpart in multiple settings, including: (a) zero-shot
classification, (b) linear probe transfer, and (c) image-text retrieval,
without incurring added computational cost. Analysis using an ImageNet-based
robustness test-bed reveals that our method offers better effective robustness
to natural distribution shifts compared to both ImageNet-trained models and
CLIP itself. Lastly, pretraining with datasets spanning two orders of magnitude
in size shows that our improvements over CLIP tend to scale with number of
training examples.
Related papers
- TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives [65.82577305915643]
Contrastive Language-Image Pretraining (CLIP) models maximize the mutual information between text and visual modalities to learn representations.
We show that generating hard'' negative captions via in-context learning and corresponding negative images with text-to-image generators offers a solution.
We demonstrate that our method, named TripletCLIP, enhances the compositional capabilities of CLIP, resulting in an absolute improvement of over 9% on the SugarCrepe benchmark.
arXiv Detail & Related papers (2024-11-04T19:24:59Z) - Contrastive Learning with Synthetic Positives [11.932323457691945]
Contrastive learning with the nearest neighbor has proved to be one of the most efficient self-supervised learning (SSL) techniques.
In this paper, we introduce a novel approach called Contrastive Learning with Synthetic Positives (NCLP)
NCLP utilizes synthetic images, generated by an unconditional diffusion model, as the additional positives to help the model learn from diverse positives.
arXiv Detail & Related papers (2024-08-30T01:47:43Z) - Semantic Compositions Enhance Vision-Language Contrastive Learning [46.985865191341944]
We show that the zero-shot classification and retrieval capabilities of CLIP-like models can be improved significantly through the introduction of semantically composite examples during pretraining.
Our method fuses the captions and blends 50% of each image to form a new composite sample.
The benefits of CLIP-C are particularly pronounced in settings with relatively limited pretraining data.
arXiv Detail & Related papers (2024-07-01T15:58:20Z) - Leveraging Cross-Modal Neighbor Representation for Improved CLIP Classification [54.96876797812238]
We present a novel CrOss-moDal nEighbor Representation(CODER) based on the distance structure between images and their neighbor texts.
The key to construct a high-quality CODER lies in how to create a vast amount of high-quality and diverse texts to match with images.
Experiment results across various datasets and models confirm CODER's effectiveness.
arXiv Detail & Related papers (2024-04-27T02:04:36Z) - Transformer-based Clipped Contrastive Quantization Learning for
Unsupervised Image Retrieval [15.982022297570108]
Unsupervised image retrieval aims to learn the important visual characteristics without any given level to retrieve the similar images for a given query image.
In this paper, we propose a TransClippedCLR model by encoding the global context of an image using Transformer having local context through patch based processing.
Results using the proposed clipped contrastive learning are greatly improved on all datasets as compared to same backbone network with vanilla contrastive learning.
arXiv Detail & Related papers (2024-01-27T09:39:11Z) - Understanding Transferable Representation Learning and Zero-shot Transfer in CLIP [84.90129481336659]
We study transferrable representation learning underlying CLIP and demonstrate how features from different modalities get aligned.
Inspired by our analysis, we propose a new CLIP-type approach, which achieves better performance than CLIP and other state-of-the-art methods on benchmark datasets.
arXiv Detail & Related papers (2023-10-02T06:41:30Z) - Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
We present a novel data-efficient semi-supervised framework to improve the generalization of image captioning models.
Our proposed method trains a captioner to learn from a paired data and to progressively associate unpaired data.
Our extensive and comprehensive empirical results both on (1) image-based and (2) dense region-based captioning datasets followed by comprehensive analysis on the scarcely-paired dataset.
arXiv Detail & Related papers (2023-01-26T15:25:43Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - COTS: Collaborative Two-Stream Vision-Language Pre-Training Model for
Cross-Modal Retrieval [59.15034487974549]
We propose a novel COllaborative Two-Stream vision-language pretraining model termed COTS for image-text retrieval.
Our COTS achieves the highest performance among all two-stream methods and comparable performance with 10,800X faster in inference.
Importantly, our COTS is also applicable to text-to-video retrieval, yielding new state-ofthe-art on the widely-used MSR-VTT dataset.
arXiv Detail & Related papers (2022-04-15T12:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.