論文の概要: HyperLoader: Integrating Hypernetwork-Based LoRA and Adapter Layers into Multi-Task Transformers for Sequence Labelling
- arxiv url: http://arxiv.org/abs/2407.01411v3
- Date: Sun, 25 Aug 2024 09:39:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 22:57:33.312101
- Title: HyperLoader: Integrating Hypernetwork-Based LoRA and Adapter Layers into Multi-Task Transformers for Sequence Labelling
- Title(参考訳): HyperLoader: シーケンスラベリングのためのマルチタスク変換器にハイパーネットワークベースのLoRAとアダプタ層を統合する
- Authors: Jesus-German Ortiz-Barajas, Helena Gomez-Adorno, Thamar Solorio,
- Abstract要約: マルチタスク設定におけるパラメータ効率の異なる微調整手法を組み合わせたシンプルな手法であるHyperLoaderを提案する。
本手法は,全タスクの構造を捉えることで,マルチタスク学習の利点を組み合わせる。
我々は、HyperLoaderが多くのデータセットで過去のアプローチより優れているという実証的な証拠を提供する。
- 参考スコア(独自算出の注目度): 5.955463697605461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present HyperLoader, a simple approach that combines different parameter-efficient fine-tuning methods in a multi-task setting. To achieve this goal, our model uses a hypernetwork to generate the weights of these modules based on the task, the transformer layer, and its position within this layer. Our method combines the benefits of multi-task learning by capturing the structure of all tasks while reducing the task interference problem by encapsulating the task-specific knowledge in the generated weights and the benefits of combining different parameter-efficient methods to outperform full-fine tuning. We provide empirical evidence that HyperLoader outperforms previous approaches in most datasets and obtains the best average performance across tasks in high-resource and low-resource scenarios.
- Abstract(参考訳): マルチタスク設定におけるパラメータ効率の異なる微調整手法を組み合わせたシンプルな手法であるHyperLoaderを提案する。
この目的を達成するために、我々のモデルはハイパーネットワークを用いて、タスク、トランスフォーマー層、およびこの層内のその位置に基づいて、これらのモジュールの重みを生成する。
提案手法は,タスク固有の知識を生成重みにカプセル化することでタスクの干渉問題を低減しつつ,タスクの構造を把握し,マルチタスク学習の利点と,パラメータ効率の異なる手法を組み合わせることで,全タスクのチューニング性能を向上する利点を組み合わせたものである。
我々は、HyperLoaderが、ほとんどのデータセットで以前のアプローチより優れており、高リソースおよび低リソースのシナリオにおけるタスク間での最高の平均パフォーマンスが得られるという実証的な証拠を提供する。
関連論文リスト
- MoDE: Effective Multi-task Parameter Efficient Fine-Tuning with a Mixture of Dyadic Experts [6.245113492272563]
Mixture of Dyadic Experts (MoDE) は効率的なマルチタスク適応のための新しい設計である。
我々の設計はよりきめ細かい混合を可能にし、それによってモデルの複数のタスクを共同で処理する能力を高めます。
論文 参考訳(メタデータ) (2024-08-02T18:05:10Z) - HarmoDT: Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [72.25707314772254]
本稿では,各タスクに対するパラメータの最適な調和部分空間を特定するための新しいソリューションであるHarmoDT(Harmony Multi-Task Decision Transformer)を紹介する。
このフレームワークの上位レベルは、調和部分空間を規定するタスク固有のマスクの学習に特化しており、内部レベルは、統一されたポリシーの全体的なパフォーマンスを高めるためにパラメータの更新に重点を置いている。
論文 参考訳(メタデータ) (2024-05-28T11:41:41Z) - Merging Multi-Task Models via Weight-Ensembling Mixture of Experts [64.94129594112557]
異なるタスクでトレーニングされたTransformerベースのモデルを単一の統一モデルにマージすることで、すべてのタスクを同時に実行できる。
従来の手法は、タスク演算によって例示され、効率的かつスケーラブルであることが証明されている。
本稿では,Transformer層をMoEモジュールにアップスケーリングしながら,ほとんどのパラメータをマージすることを提案する。
論文 参考訳(メタデータ) (2024-02-01T08:58:57Z) - Prototype-based HyperAdapter for Sample-Efficient Multi-task Tuning [30.251155072822055]
Prototype-based HyperAdapter (PHA)は、アダプタチューニングとハイパーネットワーク上に構築された新しいフレームワークである。
サンプル効率のよい条件付きモジュールを生成するために、インスタンスdenseレトリバーとプロトタイプのハイパーネットワークを導入する。
PHAは、トレーニング可能なパラメータ、ストリームタスクの精度、サンプル効率のトレードオフをより良くすることを示す。
論文 参考訳(メタデータ) (2023-10-18T02:42:17Z) - Parameter Efficient Multi-task Model Fusion with Partial Linearization [97.23530944186078]
パラメータ効率のよい微調整技術において,マルチタスク融合を改善する新しい手法を提案する。
提案手法は, アダプタモジュールのみを部分的に線形化し, 線形化アダプタにタスク演算を適用する。
我々の部分線形化手法は、複数のタスクをより効果的に1つのモデルに融合させることを可能にしている。
論文 参考訳(メタデータ) (2023-10-07T08:55:54Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing(TAPS)は、階層の小さなタスク固有のサブセットを適応的に修正することで、ベースモデルを新しいタスクにチューニングする手法である。
他の手法と比較して、TAPSはダウンストリームタスクに対して高い精度を維持し、タスク固有のパラメータは少ない。
我々は,タスクやアーキテクチャ(ResNet,DenseNet,ViT)を微調整して評価し,実装が簡単でありながら最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2022-03-30T23:16:07Z) - Parameter-efficient Multi-task Fine-tuning for Transformers via Shared
Hypernetworks [37.2958914602899]
共有ハイパーネットワークを用いて、すべてのレイヤやタスクのアダプタパラメータを生成できることを示す。
よく知られたGLUEベンチマークの実験では、タスク当たり0.29%のパラメータしか追加することなく、マルチタスク学習のパフォーマンスが改善された。
論文 参考訳(メタデータ) (2021-06-08T16:16:40Z) - HyperGrid: Efficient Multi-Task Transformers with Grid-wise Decomposable
Hyper Projections [96.64246471034195]
我々は,マルチタスク学習を効果的に行う新しいアプローチであるtextscHyperGridを提案する。
本手法は,微調整とマルチタスク学習のギャップを埋めるのに役立つ。
論文 参考訳(メタデータ) (2020-07-12T02:49:16Z) - Using a thousand optimization tasks to learn hyperparameter search
strategies [53.318615663332274]
本稿では、ニューラルネットワークのトレーニングと評価に使用するニューラルネットワークのデータセットであるTaskSetを紹介する。
TaskSetはそのサイズと多様性に特有で、完全な接続または畳み込みネットワークによるイメージ分類から変分オートエンコーダ、さまざまなデータセット上の非ボリューム保存フローまで、数千以上のタスクを含んでいる。
論文 参考訳(メタデータ) (2020-02-27T02:49:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。