論文の概要: The Balanced-Pairwise-Affinities Feature Transform
- arxiv url: http://arxiv.org/abs/2407.01467v1
- Date: Tue, 25 Jun 2024 14:28:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-07 13:34:23.951703
- Title: The Balanced-Pairwise-Affinities Feature Transform
- Title(参考訳): バランス-ペア-アフィニティ特徴変換
- Authors: Daniel Shalam, Simon Korman,
- Abstract要約: BPA機能変換は、入力項目のセットの機能をアップグレードして、下流のマッチングや関連するタスクのグループ化を容易にするように設計されている。
特定の min- Cost-max-flow の分数マッチング問題は、効率的、微分可能、同変、パラメータレス、確率論的に解釈可能な変換をもたらす。
経験的には、この変換はその使用において非常に効果的で柔軟性があり、様々なタスクやトレーニングスキームにおいて挿入されるネットワークを継続的に改善する。
- 参考スコア(独自算出の注目度): 2.3020018305241337
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Balanced-Pairwise-Affinities (BPA) feature transform is designed to upgrade the features of a set of input items to facilitate downstream matching or grouping related tasks. The transformed set encodes a rich representation of high order relations between the input features. A particular min-cost-max-flow fractional matching problem, whose entropy regularized version can be approximated by an optimal transport (OT) optimization, leads to a transform which is efficient, differentiable, equivariant, parameterless and probabilistically interpretable. While the Sinkhorn OT solver has been adapted extensively in many contexts, we use it differently by minimizing the cost between a set of features to $itself$ and using the transport plan's $rows$ as the new representation. Empirically, the transform is highly effective and flexible in its use and consistently improves networks it is inserted into, in a variety of tasks and training schemes. We demonstrate state-of-the-art results in few-shot classification, unsupervised image clustering and person re-identification. Code is available at \url{github.com/DanielShalam/BPA}.
- Abstract(参考訳): Balanced-Pairwise-Affinities (BPA) 機能変換は、入力項目のセットの機能をアップグレードして、下流のマッチングや関連するタスクのグループ化を容易にするように設計されている。
変換された集合は、入力特徴間の高次関係のリッチな表現を符号化する。
エントロピー正則化バージョンを最適輸送(OT)最適化によって近似できる特定のミンコスト-マックス-フロー分数マッチング問題(英語版)は、効率的、微分可能、同変、パラメータレス、確率論的に解釈可能な変換をもたらす。
Sinkhorn OTソルバは、多くの文脈で広く適用されていますが、機能セットから$itself$までのコストを最小化し、トランスポートプランの$rows$を新しい表現として使用することで、異なる方法で使用しています。
経験的には、この変換はその使用において非常に効果的で柔軟性があり、様々なタスクやトレーニングスキームにおいて挿入されるネットワークを継続的に改善する。
画像クラスタリングや人物の再識別などにおいて,最先端の成果を実演する。
コードは \url{github.com/DanielShalam/BPA} で入手できる。
関連論文リスト
- Self-supervised Transformation Learning for Equivariant Representations [26.207358743969277]
教師なし表現学習は、様々な機械学習タスクを大幅に進歩させた。
本稿では,変換ラベルを画像ペアから派生した変換表現に置き換える自己教師あり変換学習(STL)を提案する。
さまざまな分類タスクと検出タスクにまたがって、アプローチの有効性を実証し、11のベンチマークのうち7つで既存の手法より優れています。
論文 参考訳(メタデータ) (2025-01-15T10:54:21Z) - Rethinking Addressing in Language Models via Contexualized Equivariant Positional Encoding [89.52931576290976]
トランスフォーマーは、コンテンツベースと位置ベースのアドレッシングメカニズムの両方に依存して予測を行う。
TAPEは、レイヤ間のシーケンスコンテンツを組み込むことで、位置埋め込みを強化する新しいフレームワークである。
提案手法は,パラメータ効率の良い微調整を最小限のオーバーヘッドで実現し,事前学習した変換器に容易に組み込むことができる。
論文 参考訳(メタデータ) (2025-01-01T03:23:00Z) - Structural Entropy Guided Probabilistic Coding [52.01765333755793]
構造エントロピー誘導型確率的符号化モデルSEPCを提案する。
我々は、構造エントロピー正規化損失を提案することにより、潜在変数間の関係を最適化に組み込む。
分類タスクと回帰タスクの両方を含む12の自然言語理解タスクに対する実験結果は、SEPCの優れた性能を示す。
論文 参考訳(メタデータ) (2024-12-12T00:37:53Z) - Variable-size Symmetry-based Graph Fourier Transforms for image compression [65.7352685872625]
可変サイズのグラフフーリエ変換を符号化フレームワークに導入する。
提案アルゴリズムは,ノード間の特定の対称接続を追加することにより,グリッド上の対称グラフを生成する。
実験により、SBGFTは、明示的な多重変換選択に統合された一次変換よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-11-24T13:00:44Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
我々は、性能改善の問題、特にディープニューラルネットワークのサンプル複雑性に対処する。
群同変畳み込みは同変表現を得るための一般的なアプローチである。
本稿では,各ストリームが異なる変換に不変なマルチストリームアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-03-02T20:44:45Z) - B-cos Networks: Alignment is All We Need for Interpretability [136.27303006772294]
本稿では,深層ニューラルネットワーク(DNN)の学習における重み付けの促進による解釈可能性の向上に向けた新たな方向性を提案する。
B-コス変換は、完全なモデル計算を忠実に要約する単一の線形変換を誘導する。
VGGs、ResNets、InceptionNets、DenseNetsといった一般的なモデルに簡単に統合できることを示します。
論文 参考訳(メタデータ) (2022-05-20T16:03:29Z) - The Self-Optimal-Transport Feature Transform [2.804721532913997]
ダウンストリームマッチングや関連するタスクのグループ化を容易にするために、データインスタンスの機能セットをアップグレードする方法を示します。
エントロピー正規化バージョンを最適輸送 (OT) 最適化により近似できる, 特定の min-コスト-max-flow 分数マッチング問題により, トランスダクティブ・トランスフォーメーションが生じる。
経験的に、この変換は、その使用において非常に効果的で柔軟性があり、挿入されるネットワークを一貫して改善している。
論文 参考訳(メタデータ) (2022-04-06T20:00:39Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。