論文の概要: Variable-size Symmetry-based Graph Fourier Transforms for image compression
- arxiv url: http://arxiv.org/abs/2411.15824v1
- Date: Sun, 24 Nov 2024 13:00:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:04.789569
- Title: Variable-size Symmetry-based Graph Fourier Transforms for image compression
- Title(参考訳): 可変サイズ対称性に基づく画像圧縮用グラフフーリエ変換
- Authors: Alessandro Gnutti, Fabrizio Guerrini, Riccardo Leonardi, Antonio Ortega,
- Abstract要約: 可変サイズのグラフフーリエ変換を符号化フレームワークに導入する。
提案アルゴリズムは,ノード間の特定の対称接続を追加することにより,グリッド上の対称グラフを生成する。
実験により、SBGFTは、明示的な多重変換選択に統合された一次変換よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 65.7352685872625
- License:
- Abstract: Modern compression systems use linear transformations in their encoding and decoding processes, with transforms providing compact signal representations. While multiple data-dependent transforms for image/video coding can adapt to diverse statistical characteristics, assembling large datasets to learn each transform is challenging. Also, the resulting transforms typically lack fast implementation, leading to significant computational costs. Thus, despite many papers proposing new transform families, the most recent compression standards predominantly use traditional separable sinusoidal transforms. This paper proposes integrating a new family of Symmetry-based Graph Fourier Transforms (SBGFTs) of variable sizes into a coding framework, focusing on the extension from our previously introduced 8x8 SBGFTs to the general case of NxN grids. SBGFTs are non-separable transforms that achieve sparse signal representation while maintaining low computational complexity thanks to their symmetry properties. Their design is based on our proposed algorithm, which generates symmetric graphs on the grid by adding specific symmetrical connections between nodes and does not require any data-dependent adaptation. Furthermore, for video intra-frame coding, we exploit the correlations between optimal graphs and prediction modes to reduce the cardinality of the transform sets, thus proposing a low-complexity framework. Experiments show that SBGFTs outperform the primary transforms integrated in the explicit Multiple Transform Selection (MTS) used in the latest VVC intra-coding, providing a bit rate saving percentage of 6.23%, with only a marginal increase in average complexity. A MATLAB implementation of the proposed algorithm is available online at [1].
- Abstract(参考訳): 現代の圧縮システムは、符号化と復号処理に線形変換を使用し、変換はコンパクトな信号表現を提供する。
画像/ビデオ符号化のための複数のデータ依存変換は多様な統計特性に適応できるが、大きなデータセットを組み立てて各変換を学習することは困難である。
また、結果の変換は通常高速な実装を欠き、計算コストが大幅に低下する。
したがって、新しい変換族を提案する多くの論文にもかかわらず、最新の圧縮標準は主に伝統的な分離可能な正弦波変換を使用する。
本稿では,従来の8x8 SBGFTから一般的なNxNグリッドへの拡張に着目し,可変サイズのグラフフーリエ変換(SBGFT)を符号化フレームワークに統合することを提案する。
SBGFTは、その対称性特性により計算複雑性を低く保ちながらスパース信号表現を実現する非分離変換である。
提案アルゴリズムは,ノード間の特定の対称接続を追加してグリッド上の対称グラフを生成し,データ依存の適応を必要としない。
さらに、ビデオフレーム内符号化では、最適なグラフと予測モードの相関を利用して変換セットの濃度を減少させ、低複雑さのフレームワークを提案する。
実験により、SBGFTは、最新のVVCイントラコーディングで使用される明示的な多重変換選択(MTS)に統合された一次変換よりも優れており、ビットレートの削減率は6.23%であり、平均複雑性の限界的な増加しか示していない。
提案アルゴリズムのMATLAB実装は[1]でオンラインで公開されている。
関連論文リスト
- Fast Data-independent KLT Approximations Based on Integer Functions [0.0]
Karhunen-Loeve変換(KLT)は確立された離散変換であり、データのデコリレーションと次元減少の最適特性を示す。
本稿では、様々なラウンドオフ関数を用いて、低複雑さでデータに依存しないKLT近似のカテゴリを紹介する。
提案した変換は,古典的性能尺度を考慮した正確なKLTおよび近似と比較すると良好に動作する。
論文 参考訳(メタデータ) (2024-10-11T20:05:05Z) - Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors [16.04850782310842]
我々は反復最適化アルゴリズムをアンロールすることで、解釈可能で軽量なトランスフォーマーのようなニューラルネットワークを構築する。
正規化信号依存グラフ学習モジュールは、従来の変圧器の基本自己保持機構の変種に相当する。
論文 参考訳(メタデータ) (2024-06-06T14:01:28Z) - Entropy Transformer Networks: A Learning Approach via Tangent Bundle
Data Manifold [8.893886200299228]
本稿では,CNNアーキテクチャの設計における画像変換の高精度かつ高速なアプローチについて述べる。
データ多様体分布を補間する新しいエントロピーSTN(ESTN)を提案する。
挑戦的なベンチマークの実験は、提案されたESTNがコンピュータビジョンタスクの範囲で予測精度を向上させることを示している。
論文 参考訳(メタデータ) (2023-07-24T04:21:51Z) - B-cos Alignment for Inherently Interpretable CNNs and Vision
Transformers [97.75725574963197]
本稿では,深層ニューラルネットワーク(DNN)の学習における重み付けの促進による解釈可能性の向上に向けた新たな方向性を提案する。
このような変換の列は、完全なモデル計算を忠実に要約する単一の線形変換を誘導することを示す。
得られた説明は視覚的品質が高く,定量的解釈可能性指標下では良好に機能することを示す。
論文 参考訳(メタデータ) (2023-06-19T12:54:28Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
我々は、性能改善の問題、特にディープニューラルネットワークのサンプル複雑性に対処する。
群同変畳み込みは同変表現を得るための一般的なアプローチである。
本稿では,各ストリームが異なる変換に不変なマルチストリームアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-03-02T20:44:45Z) - B-cos Networks: Alignment is All We Need for Interpretability [136.27303006772294]
本稿では,深層ニューラルネットワーク(DNN)の学習における重み付けの促進による解釈可能性の向上に向けた新たな方向性を提案する。
B-コス変換は、完全なモデル計算を忠実に要約する単一の線形変換を誘導する。
VGGs、ResNets、InceptionNets、DenseNetsといった一般的なモデルに簡単に統合できることを示します。
論文 参考訳(メタデータ) (2022-05-20T16:03:29Z) - Hybrid Model-based / Data-driven Graph Transform for Image Coding [54.31406300524195]
予測内残差ブロックを符号化するハイブリッドモデルベース/データ駆動方式を提案する。
変換行列の最初の$K$固有ベクトルは、安定性のための非対称離散正弦変換(ADST)のような統計モデルから導かれる。
WebPをベースライン画像として使用することにより、我々のハイブリッドグラフ変換は、デフォルトの離散コサイン変換(DCT)よりもエネルギーの圧縮が良く、KLTよりも安定性がよいことを示す。
論文 参考訳(メタデータ) (2022-03-02T15:36:44Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - A Multiparametric Class of Low-complexity Transforms for Image and Video
Coding [0.0]
本稿では,Bouguezel,Ahmed,Swamyの一連の論文に基づいて,低複素度8点DCT近似の新たなクラスを導入する。
最適DCT近似は、符号化効率と画像品質の指標の点で魅力的な結果を示すことを示す。
論文 参考訳(メタデータ) (2020-06-19T21:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。