DogeRM: Equipping Reward Models with Domain Knowledge through Model Merging
- URL: http://arxiv.org/abs/2407.01470v2
- Date: Sat, 05 Oct 2024 17:48:41 GMT
- Title: DogeRM: Equipping Reward Models with Domain Knowledge through Model Merging
- Authors: Tzu-Han Lin, Chen-An Li, Hung-yi Lee, Yun-Nung Chen,
- Abstract summary: We propose textbfDomain knowledtextbfge merged textbfReward textbfModel (DogeRM), a novel framework that integrates domain-specific knowledge into a general reward model by model merging.
- Score: 65.41765072566287
- License:
- Abstract: Reinforcement learning from human feedback (RLHF) is a popular strategy for aligning large language models (LLMs) with desired behaviors. Reward modeling is a crucial step in RLHF. However, collecting paired preference data for training reward models is often costly and time-consuming, especially for domain-specific preferences requiring expert annotation. To address this challenge, we propose the \textbf{Do}main knowled\textbf{ge} merged \textbf{R}eward \textbf{M}odel (DogeRM), a novel framework that integrates domain-specific knowledge into a general reward model by model merging. The experiments demonstrate that DogeRM enhances performance across different benchmarks and provide a detailed analysis showcasing the effects of model merging, showing the great potential of facilitating model alignment.
Related papers
- Quantile Regression for Distributional Reward Models in RLHF [1.8130068086063336]
We introduce Quantile Reward Models (QRMs), a novel approach to reward modeling that learns a distribution over rewards instead of a single scalar value.
Our method uses quantile regression to estimate a full, potentially multimodal distribution over preferences, providing a more powerful and nuanced representation of preferences.
Our experimental results show that QRM outperforms comparable traditional point-estimate models on RewardBench.
arXiv Detail & Related papers (2024-09-16T10:54:04Z) - Semi-Supervised Reward Modeling via Iterative Self-Training [52.48668920483908]
We propose Semi-Supervised Reward Modeling (SSRM), an approach that enhances RM training using unlabeled data.
We demonstrate that SSRM significantly improves reward models without incurring additional labeling costs.
Overall, SSRM substantially reduces the dependency on large volumes of human-annotated data, thereby decreasing the overall cost and time involved in training effective reward models.
arXiv Detail & Related papers (2024-09-10T22:57:58Z) - HAF-RM: A Hybrid Alignment Framework for Reward Model Training [51.59246299566669]
We propose a hybrid alignment framework HaF-RM for reward model training.
It offers a principled and effective approach to enhancing the performance and alignment of reward models.
arXiv Detail & Related papers (2024-07-04T23:26:56Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - ALaRM: Align Language Models via Hierarchical Rewards Modeling [41.79125107279527]
We introduce ALaRM, the first framework modeling hierarchical rewards in reinforcement learning from human feedback.
The framework addresses the limitations of current alignment approaches, by integrating holistic rewards with aspect-specific rewards.
We validate our approach through applications in long-form question answering and machine translation tasks.
arXiv Detail & Related papers (2024-03-11T14:28:40Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - Inverse Reinforcement Learning for Text Summarization [52.765898203824975]
We introduce inverse reinforcement learning (IRL) as an effective paradigm for training abstractive summarization models.
Experimental results across datasets in different domains demonstrate the superiority of our proposed IRL model for summarization over MLE and RL baselines.
arXiv Detail & Related papers (2022-12-19T23:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.