A diagrammatic language for the Causaloid framework
- URL: http://arxiv.org/abs/2407.01522v1
- Date: Mon, 1 Jul 2024 17:59:23 GMT
- Title: A diagrammatic language for the Causaloid framework
- Authors: Nitica Sakharwade, Lucien Hardy,
- Abstract summary: Causaloid framework aims to house both the radical aspects of General Relativity -- dynamic causal structure, and Quantum Theory -- indefiniteness.
One may consider it as a generalisation of generalised probability theories (or GPTs) where a priori regions are not assumed to have any given causal relationship.
This is the first paper in a trilogy of papers aiming to close the gap between the Causaloid (that allows for GPTs) and post-quantum studies that employ Hilbert spaces.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Causaloid framework is an operational approach aimed to house both the radical aspects of General Relativity -- dynamic causal structure, and Quantum Theory -- indefiniteness, to provide a scaffolding that might be suitable for Quantum Gravity by providing a landscape of theories that allow for indefinite causal structure. One may consider it as a generalisation of generalised probability theories (or GPTs) where a priori regions are not assumed to have any given causal relationship, to incorporate the possibility of indefinite causal structure. Since its conception, there have been many advances in the field of indefinite causal structure mostly stemming from the work of Chiribella et al. on the quantum switch and supermaps and from Oreshkov et al. on causal inequalities and process matrices. These approaches have systems moving along wires and use Hilbert space structure. They violate the standard causality constraints of Quantum Theory and, in this sense, can be regarded as post-quantum. The Causaloid approach does not necessarily have systems moving along wires or Hilbert spaces. This is the first paper in a trilogy of papers aiming to close the gap between the Causaloid (that allows for GPTs) and post-quantum studies that employ Hilbert spaces. To do so in the present paper, we provide a diagrammatic language for the Causaloid framework along with new terminology for the three levels of physical compression (called Tomographic, Compositional, and Meta compression).
Related papers
- Achieving Maximal Causal Indefiniteness in a Maximally Nonlocal Theory [0.0]
We show that in maximal theories, respecting non-signalling relations, single system state-spaces do not admit superposition; however, composite systems do.
We provide a concrete example of a maximally Bell-nonlocal theory, which allows for post-quantum violations of theory-independent inequalities.
These findings might point towards potential connections between a theory's ability to admit indefinite causal order, Bell-nonlocal correlations and the structure of its state spaces.
arXiv Detail & Related papers (2024-11-06T19:01:47Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - A Measure-Theoretic Axiomatisation of Causality [55.6970314129444]
We argue in favour of taking Kolmogorov's measure-theoretic axiomatisation of probability as the starting point towards an axiomatisation of causality.
Our proposed framework is rigorously grounded in measure theory, but it also sheds light on long-standing limitations of existing frameworks.
arXiv Detail & Related papers (2023-05-19T13:15:48Z) - Admissible Causal Structures and Correlations [0.0]
We study limitations on causal structures and correlations imposed by local quantum theory.
For one, we find a necessary graph theoretic criterion--the "siblings-on-cycles" property--for a causal structure to be admissible.
We show that these causal models, in a restricted setting, are indeed consistent.
arXiv Detail & Related papers (2022-10-23T17:33:47Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Causal structure in the presence of sectorial constraints, with
application to the quantum switch [0.0]
Existing work on quantum causal structure assumes that one can perform arbitrary operations on systems of interest.
We extend the framework for quantum causal modelling to situations where a system can suffer sectorial constraints.
arXiv Detail & Related papers (2022-04-21T17:18:31Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - The Ultraviolet Structure of Quantum Field Theories. Part 1: Quantum
Mechanics [0.0]
This paper fires the opening salvo in the systematic construction of the lattice-continuum correspondence.
The focus will be on quantum field theory in (0+1)D, i.e. quantum mechanics.
arXiv Detail & Related papers (2021-05-24T18:00:06Z) - Approaches to causality and multi-agent paradoxes in non-classical
theories [0.0]
This thesis reports progress in the analysis of causality and multi-agent logical paradoxes in quantum and post-quantum theories.
We develop techniques for using generalised entropies to analyse distinctions between classical and non-classical causal structures.
We develop a framework for modelling cyclic and fine-tuned influences in non-classical theories.
arXiv Detail & Related papers (2021-02-04T03:35:57Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.