論文の概要: NaviSlim: Adaptive Context-Aware Navigation and Sensing via Dynamic Slimmable Networks
- arxiv url: http://arxiv.org/abs/2407.01563v1
- Date: Thu, 16 May 2024 01:18:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 22:28:39.810792
- Title: NaviSlim: Adaptive Context-Aware Navigation and Sensing via Dynamic Slimmable Networks
- Title(参考訳): NaviSlim:動的スリムネットワークによる適応型コンテキスト認識ナビゲーションとセンシング
- Authors: Tim Johnsen, Marco Levorato,
- Abstract要約: NaviSlimは、コンピューティングとセンサーに費やされるリソース量に適応可能な、ニューラルナビゲーションモデルの新たなクラスである。
NaviSlimは、既存のスリムブルネットワークとは異なり、モデル複雑性を自律的にスケールするためにスリム化要因を動的に選択できるゲートスリムブルニューラルネットワークアーキテクチャとして設計されている。
難易度が異なるシナリオでNaviSlimモデルを評価し, 平均57~92%, 61~80%のセンサ利用率でモデル複雑性を動的に減少させるテストセットを作成した。
- 参考スコア(独自算出の注目度): 2.145904182587639
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Small-scale autonomous airborne vehicles, such as micro-drones, are expected to be a central component of a broad spectrum of applications ranging from exploration to surveillance and delivery. This class of vehicles is characterized by severe constraints in computing power and energy reservoir, which impairs their ability to support the complex state-of-the-art neural models needed for autonomous operations. The main contribution of this paper is a new class of neural navigation models -- NaviSlim -- capable of adapting the amount of resources spent on computing and sensing in response to the current context (i.e., difficulty of the environment, current trajectory, and navigation goals). Specifically, NaviSlim is designed as a gated slimmable neural network architecture that, different from existing slimmable networks, can dynamically select a slimming factor to autonomously scale model complexity, which consequently optimizes execution time and energy consumption. Moreover, different from existing sensor fusion approaches, NaviSlim can dynamically select power levels of onboard sensors to autonomously reduce power and time spent during sensor acquisition, without the need to switch between different neural networks. By means of extensive training and testing on the robust simulation environment Microsoft AirSim, we evaluate our NaviSlim models on scenarios with varying difficulty and a test set that showed a dynamic reduced model complexity on average between 57-92%, and between 61-80% sensor utilization, as compared to static neural networks designed to match computing and sensing of that required by the most difficult scenario.
- Abstract(参考訳): マイクロドローンのような小型の自律飛行車両は、探査から監視、配送まで幅広い用途において中心的な役割を担っていると期待されている。
この種の車両は、計算能力とエネルギー貯水池の厳しい制約が特徴で、自律運転に必要な複雑な最先端のニューラルモデルをサポートする能力が損なわれている。
本稿の主なコントリビューションは、現在の状況(環境の難易度、現在の軌道、ナビゲーション目標など)に応じて、コンピューティングとセンシングに費やされたリソースの量に適応可能な、ニューラルナビゲーションモデル — NaviSlim -- の新たなクラスである。
具体的には、NaviSlimは、既存のスリムブルネットワークとは異なる、ゲート付きスリムブルニューラルネットワークアーキテクチャとして設計されており、スリム化要因を動的に選択して、モデル複雑性を自律的にスケールすることで、実行時間とエネルギー消費を最適化することができる。
さらに、既存のセンサーフュージョンアプローチとは違って、NaviSlimはオンボードセンサーの電力レベルを動的に選択することで、異なるニューラルネットワークを切り替えることなく、センサの取得に費やした電力と時間を自律的に削減することができる。
Microsoft AirSimのロバストなシミュレーション環境における広範なトレーニングとテストにより、難易度が異なるシナリオに関するNaviSlimモデルと、最も難しいシナリオで必要となる計算とセンシングにマッチするように設計された静的ニューラルネットワークと比較して、平均57~92%と61~80%のセンサー利用率でモデル複雑性を動的に減少させるテストセットを評価した。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Optical Flow Matters: an Empirical Comparative Study on Fusing Monocular Extracted Modalities for Better Steering [37.46760714516923]
本研究は、単眼カメラからのマルチモーダル情報を利用して、自動運転車のステアリング予測を改善する新しいエンドツーエンド手法を提案する。
本稿では,RGB画像と深度補完情報や光フローデータとの融合に着目し,これらのモダリティを早期・ハイブリッド融合技術によって統合する枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-18T09:36:24Z) - HGFF: A Deep Reinforcement Learning Framework for Lifetime Maximization in Wireless Sensor Networks [5.4894758104028245]
深部強化学習とヘテロジニアスグラフニューラルネットワークを組み合わせた新しいフレームワークを提案し,シンクの移動経路を自動構築する。
実世界の異なる無線センサネットワークをシミュレートする静的マップと動的マップを10種類設計する。
我々のアプローチは、あらゆる種類の地図において、既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-04-11T13:09:11Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
複数の物体追跡は、自律運転において重要な課題である。
トラッキングの精度が向上するにつれて、ニューラルネットワークはますます複雑になり、レイテンシが高いため、実際の運転シナリオにおける実践的な応用に課題が生じる。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法を用いて追跡のための効率的なアーキテクチャを探索し,比較的高い精度を維持しつつ,低リアルタイム遅延を実現することを目的とした。
論文 参考訳(メタデータ) (2024-03-23T04:18:49Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Eco-Driving Control of Connected and Automated Vehicles using Neural
Network based Rollout [0.0]
接続された自動運転車は、エネルギー消費を最小化する可能性がある。
既存の決定論的手法は、一般に高い計算とメモリ要求に悩まされる。
本研究ではニューラルネットワークを介して実装された階層型マルチ水平最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-16T23:13:51Z) - Autonomous Driving using Spiking Neural Networks on Dynamic Vision
Sensor Data: A Case Study of Traffic Light Change Detection [0.0]
スパイキングニューラルネットワーク(SNN)は、情報処理と意思決定のための代替モデルを提供する。
自動運転にSNNを用いた最近の研究は主に、簡易なシミュレーション環境における車線維持のような単純なタスクに焦点を当てている。
本研究は,実車上でSNNを使用するための重要なステップであるCARLAシミュレータにおける実写走行シーンについて,SNNについて検討する。
論文 参考訳(メタデータ) (2023-09-27T23:31:30Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
本研究は,エネルギー効率のよい脳誘発機械学習モデルのオンボード無線リソース管理への応用について検討する。
関連するワークロードでは、Loihi 2に実装されたスパイクニューラルネットワーク(SNN)の方が精度が高く、CNNベースのリファレンスプラットフォームと比較して消費電力が100ドル以上削減される。
論文 参考訳(メタデータ) (2023-08-22T03:13:57Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z) - Zero-Shot Reinforcement Learning with Deep Attention Convolutional
Neural Networks [12.282277258055542]
本研究では、特定の視覚センサ構成を持つ深層注意畳み込みニューラルネットワーク(DACNN)が、より低い計算複雑性で高いドメインとパラメータの変動を持つデータセット上でトレーニングを行うことを示す。
我々の新しいアーキテクチャは、制御対象に対する認識に適応し、知覚ネットワークを事前訓練することなくゼロショット学習を実現する。
論文 参考訳(メタデータ) (2020-01-02T19:41:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。