論文の概要: Flexible Transmitter Network
- arxiv url: http://arxiv.org/abs/2004.03839v3
- Date: Thu, 3 Sep 2020 14:18:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 08:00:23.334886
- Title: Flexible Transmitter Network
- Title(参考訳): フレキシブルトランスミッタネットワーク
- Authors: Shao-Qun Zhang and Zhi-Hua Zhou
- Abstract要約: 現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
- 参考スコア(独自算出の注目度): 84.90891046882213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current neural networks are mostly built upon the MP model, which usually
formulates the neuron as executing an activation function on the real-valued
weighted aggregation of signals received from other neurons. In this paper, we
propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model
with flexible synaptic plasticity. The FT model employs a pair of parameters to
model the transmitters between neurons and puts up a neuron-exclusive variable
to record the regulated neurotrophin density, which leads to the formulation of
the FT model as a two-variable two-valued function, taking the commonly-used MP
neuron model as its special case. This modeling manner makes the FT model not
only biologically more realistic, but also capable of handling complicated
data, even time series. To exhibit its power and potential, we present the
Flexible Transmitter Network (FTNet), which is built on the most common
fully-connected feed-forward architecture taking the FT model as the basic
building block. FTNet allows gradient calculation and can be implemented by an
improved back-propagation algorithm in the complex-valued domain. Experiments
on a board range of tasks show the superiority of the proposed FTNet. This
study provides an alternative basic building block in neural networks and
exhibits the feasibility of developing artificial neural networks with neuronal
plasticity.
- Abstract(参考訳): 現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
FTモデルは、ニューロン間の伝達体をモデル化するために一対のパラメータを使用し、制御されたニューロトロフィン密度を記録するためにニューロン排他変数を配置し、FTモデルを2変数の2値関数として定式化する。
このモデリング手法により、FTモデルは生物学的により現実的なだけでなく、時系列でも複雑なデータを扱うことができる。
そのパワーと可能性を示すために、FTモデルを基本ビルディングブロックとして、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築されたフレキシブルトランスミッタネットワーク(FTNet)を提案する。
FTNetは勾配計算を可能にし、複雑な値の領域で改善されたバックプロパゲーションアルゴリズムによって実装できる。
タスクのボード上での実験は、提案されたFTNetの優位性を示している。
本研究は、ニューラルネットワークにおける代替の基本構造ブロックを提供し、神経可塑性を持つ人工ニューラルネットワークの開発の可能性を示す。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
ニューロモルフィックコンピューティングはスパイクベースのエネルギー効率の高い通信に依存している。
本研究では, スパイクトレインへのサンプルベースデータの符号化に適した構成を同定するツールを開発した。
WaLiN-GUIはオープンソースとドキュメントが提供されている。
論文 参考訳(メタデータ) (2023-10-25T20:34:08Z) - Functional Neural Networks: Shift invariant models for functional data
with applications to EEG classification [0.0]
我々は、データのスムーズさを保ちながら不変な新しいタイプのニューラルネットワークを導入する:関数型ニューラルネットワーク(FNN)
そこで我々は,多層パーセプトロンと畳み込みニューラルネットワークを機能データに拡張するために,機能データ分析(FDA)の手法を用いる。
脳波(EEG)データの分類にFNNをうまく利用し,FDAのベンチマークモデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-01-14T09:41:21Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Simple and complex spiking neurons: perspectives and analysis in a
simple STDP scenario [0.7829352305480283]
スパイキングニューラルネットワーク(SNN)は、生物学や神経科学にヒントを得て、高速で効率的な学習システムを構築する。
この研究は、文学における様々なニューロンモデルを考察し、単変数で効率的な計算ニューロンモデルを選択し、様々な種類の複雑さを提示する。
我々は, LIF, Quadratic I&F (QIF) および Exponential I&F (EIF) の3つの単純なI&Fニューロンモデルの比較研究を行い, より複雑なモデルの使用によってシステムの性能が向上するかどうかを検証した。
論文 参考訳(メタデータ) (2022-06-28T10:01:51Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
バイオインスパイアされたニューラルネットワークは、イベント駆動ハードウェア上での計算効率の向上につながる可能性がある。
完全スパイキングニューラルネットワーク(EVSNN)に基づくイベントベースビデオ再構成フレームワークを提案する。
スパイクニューロンは、そのような時間依存タスクを完了させるために有用な時間情報(メモリ)を格納する可能性がある。
論文 参考訳(メタデータ) (2022-01-25T02:05:20Z) - Efficient Neuromorphic Signal Processing with Loihi 2 [6.32784133039548]
本稿では, 短時間フーリエ変換(STFT)を従来のSTFTの47倍の出力帯域幅で計算する方法を示す。
また、音声分類タスクのためのRFニューロンのトレーニングのためのバックプロパゲーションを用いた有望な予備結果を示す。
論文 参考訳(メタデータ) (2021-11-05T22:37:05Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - On Energy-Based Models with Overparametrized Shallow Neural Networks [44.74000986284978]
エネルギーベースモデル(EBM)は、ジェネレーションモデリングの強力なフレームワークです。
この研究では、浅いニューラルネットワークに焦点を当てます。
我々は、いわゆる「アクティブ」体制で訓練されたモデルが、関連する「怠慢」またはカーネル体制に対して統計的に有利であることを示す。
論文 参考訳(メタデータ) (2021-04-15T15:34:58Z) - Modeling the Nonsmoothness of Modern Neural Networks [35.93486244163653]
ピークの大きさの和(SMP)という特徴を用いて不滑らかさを定量化する。
この非平滑性機能は、ニューラルネットワークの回帰ベースのアプリケーションのためのフォレンジックツールとして利用される可能性があると考えます。
論文 参考訳(メタデータ) (2021-03-26T20:55:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。