論文の概要: DrugWatch: A Comprehensive Multi-Source Data Visualisation Platform for Drug Safety Information
- arxiv url: http://arxiv.org/abs/2407.01585v1
- Date: Tue, 18 Jun 2024 13:58:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-07 13:24:39.576119
- Title: DrugWatch: A Comprehensive Multi-Source Data Visualisation Platform for Drug Safety Information
- Title(参考訳): DrugWatch: 医薬品の安全性情報のための総合的マルチソースデータ可視化プラットフォーム
- Authors: Artem Bobrov, Domantas Saltenis, Zhaoyue Sun, Gabriele Pergola, Yulan He,
- Abstract要約: DrugWatchは、薬物安全性研究のための、使いやすくてインタラクティブなマルチソース情報可視化プラットフォームである。
ユーザーは薬の副作用とその統計情報を理解したり、関連する医療報告を柔軟に検索したり、自分の医療文書に注釈を付けることができる。
- 参考スコア(独自算出の注目度): 16.547787150879778
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drug safety research is crucial for maintaining public health, often requiring comprehensive data support. However, the resources currently available to the public are limited and fail to provide a comprehensive understanding of the relationship between drugs and their side effects. This paper introduces DrugWatch, an easy-to-use and interactive multi-source information visualisation platform for drug safety study. It allows users to understand common side effects of drugs and their statistical information, flexibly retrieve relevant medical reports, or annotate their own medical texts with our automated annotation tool. Supported by NLP technology and enriched with interactive visual components, we are committed to providing researchers and practitioners with a one-stop information analysis, retrieval, and annotation service. The demonstration video is available at https://www.youtube.com/watch?v=RTqDgxzETjw. We also deployed an online demonstration system at https://drugwatch.net/.
- Abstract(参考訳): 医薬品の安全性の研究は公衆衛生を維持するために不可欠であり、しばしば包括的データ支援を必要とする。
しかし、現在一般に入手可能な資源は限られており、薬物と副作用の関係を包括的に理解することができない。
本稿では,ドラッグセーフティ研究のための,使いやすくインタラクティブなマルチソース情報可視化プラットフォームであるDragonWatchを紹介する。
ユーザーは薬の副作用とその統計情報を理解したり、関連する医療報告を柔軟に検索したり、自動アノテーションツールで自分の医療用テキストに注釈を付けることができる。
NLP技術によってサポートされ、インタラクティブなビジュアルコンポーネントが豊富に提供され、研究者や実践者にワンストップ情報分析、検索、アノテーションサービスを提供することを約束します。
デモビデオはhttps://www.youtube.com/watch?
v=RTqDgxzETjw。
また、オンラインデモシステムをhttps://drugwatch.net/.comに展開しました。
関連論文リスト
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
医療ビジョン・アンド・ランゲージモデル(MVLM)は、複雑な医療データを解釈するための自然言語インタフェースを提供する能力から、大きな関心を集めている。
本稿では,MVLMの概要と適用した各種医療課題について概観する。
また、これらのタスクに使用するデータセットについても検討し、標準化された評価指標に基づいて異なるモデルの性能を比較した。
論文 参考訳(メタデータ) (2024-11-19T03:27:05Z) - DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning [10.528489471229946]
本稿では,最先端の機械学習技術と知識統合を用いた医薬品再調達プロセスを強化するためのマルチエージェントフレームワークを提案する。
AIエージェントは、DTIモデルを訓練し、知識グラフエージェントはDGIdbを使用してDTIを系統的に抽出する。
これらのエージェントからの出力を統合することで、外部データベースを含む多様なデータソースを効果的に活用し、実行可能な再資源化候補を提案する。
論文 参考訳(メタデータ) (2024-08-23T21:24:59Z) - Reddit-Impacts: A Named Entity Recognition Dataset for Analyzing Clinical and Social Effects of Substance Use Derived from Social Media [6.138126219622993]
物質利用障害(SUD)は、データ駆動研究を通じて、問題とそのトレンドの理解を深める必要がある、世界的な関心事である。
ソーシャルメディアは、SUDに関するユニークな重要な情報源であり、特にそのような情報源のデータは、生きた経験を持つ人々によってしばしば生成されるためである。
本稿では,処方と違法なオピオイド,およびオピオイド使用障害の薬物に関する議論を専門とするサブレディットからキュレートされた,難解な名前付きエンティティ認識(NER)データセットであるReddit-Impactsを紹介する。
このデータセットは、研究の少ないが重要な、物質利用の側面に特に焦点を絞っている。
論文 参考訳(メタデータ) (2024-05-09T23:43:57Z) - ABiMed: An intelligent and visual clinical decision support system for
medication reviews and polypharmacy management [3.843569766201585]
ABiMedの目的は、医薬品レビューと多薬局管理のための革新的な臨床決定支援システムを設計することである。
ABiMedは、ガイドラインの実装と、GPの電子健康記録から患者データを自動抽出し、薬剤師に転送すること、および視覚分析を用いてコンテキスト化された薬物知識を視覚的に提示すること、の2つのアプローチを関連付けている。
論文 参考訳(メタデータ) (2023-12-13T11:06:45Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
既存の薬物と新薬のギャップを埋めるために, 薬物依存型マルチフェノタイプ数発学習機を開発した。
EDGEは外部薬効知識ベースを用いて偽陰性監視信号を除去する。
その結果, EDGEは, ROC-AUCスコアよりも7.3%向上していることがわかった。
論文 参考訳(メタデータ) (2022-10-11T16:07:52Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
新しい治療法のために既存の薬物を再利用することは、実験コストの低減で薬物開発を加速する魅力的な解決策である。
本稿では,薬物再資源化のための深層学習手法とツールの活用に関するガイドラインを紹介する。
論文 参考訳(メタデータ) (2022-02-08T09:42:08Z) - CREATe: Clinical Report Extraction and Annotation Technology [53.731999072534876]
臨床症例報告は、特定の臨床症例の特異な側面を記述した記述である。
これらのレポートを注釈付け、インデックス付け、あるいはキュレートするエンドツーエンドシステムを開発する試みはない。
本稿では,新たな計算資源プラットフォームを提案し,臨床事例レポートの内容の抽出,索引付け,照会を行う。
論文 参考訳(メタデータ) (2021-02-28T16:50:14Z) - A Review of Biomedical Datasets Relating to Drug Discovery: A Knowledge
Graph Perspective [4.746544835197422]
薬物発見分野に新しい技術を適用することに興味を持つ機械学習や知識グラフの実践者を支援することを目的としている。
様々な創薬中心の知識グラフの構築に適した情報を含む公開のプライマリデータソースを詳細に説明します。
論文 参考訳(メタデータ) (2021-02-19T17:49:38Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
ユーザの健康状態の重症度を評価するために,テキストコンテンツとコンテキスト情報の両方をモデル化する多視点学習フレームワークを提案する。
多様なNLUビューは、ユーザの健康を評価するために、タスクと個々の疾患の両方に効果を示す。
論文 参考訳(メタデータ) (2020-09-21T03:45:14Z) - MeDaS: An open-source platform as service to help break the walls
between medicine and informatics [20.618938647463654]
私たちはMeDicalのオープンソースプラットフォームであるMeDaSをサービスとして提案します。
MeDaSは、DL関連ツールキットを使用して、医学的背景から研究者が容易に利用できる、協調的でインタラクティブなサービスである。
提案するMeDaSプラットフォームは,RINVの考え方に基づく一連のツールキットとユーティリティに基づいて,医用画像解析に必要な前処理,後処理,拡張,可視化,その他のフェーズを実装できる。
論文 参考訳(メタデータ) (2020-07-12T15:17:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。