論文の概要: DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning
- arxiv url: http://arxiv.org/abs/2408.13378v3
- Date: Mon, 16 Sep 2024 22:13:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-09-18 21:29:24.953407
- Title: DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning
- Title(参考訳): DrugAgent: 大規模言語モデルに基づく推論による説明可能な薬物再資源化剤
- Authors: Yoshitaka Inoue, Tianci Song, Tianfan Fu,
- Abstract要約: 本稿では,最先端の機械学習技術と知識統合を用いた医薬品再調達プロセスを強化するためのマルチエージェントフレームワークを提案する。
AIエージェントは、DTIモデルを訓練し、知識グラフエージェントはDGIdbを使用してDTIを系統的に抽出する。
これらのエージェントからの出力を統合することで、外部データベースを含む多様なデータソースを効果的に活用し、実行可能な再資源化候補を提案する。
- 参考スコア(独自算出の注目度): 10.528489471229946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drug repurposing offers a promising avenue for accelerating drug development by identifying new therapeutic potentials of existing drugs. In this paper, we propose a multi-agent framework to enhance the drug repurposing process using state-of-the-art machine learning techniques and knowledge integration. Our framework comprises several specialized agents: an AI Agent trains robust drug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the drug-gene interaction database (DGIdb), DrugBank, Comparative Toxicogenomics Database (CTD), and Search Tool for Interactions of Chemicals (STITCH) to systematically extract DTIs; and a Search Agent interacts with biomedical literature to annotate and verify computational predictions. By integrating outputs from these agents, our system effectively harnesses diverse data sources, including external databases, to propose viable repurposing candidates. Preliminary results demonstrate the potential of our approach in not only predicting drug-disease interactions but also in reducing the time and cost associated with traditional drug discovery methods. This paper highlights the scalability of multi-agent systems in biomedical research and their role in driving innovation in drug repurposing. Our approach not only outperforms existing methods in predicting drug repurposing potential but also provides interpretable results, paving the way for more efficient and cost-effective drug discovery processes.
- Abstract(参考訳): 薬物再資源化は、既存の薬物の新しい治療の可能性を特定することによって、薬物開発を加速するための有望な道を提供する。
本稿では,最先端の機械学習技術と知識統合を用いた医薬品再調達プロセスを強化するためのマルチエージェントフレームワークを提案する。
AIエージェントは、ロバストドラッグ・ターゲット・インタラクション(DTI)モデル、知識グラフエージェントは、ドラッグ・ジェネティック・インタラクション・データベース(DGIdb)、ドラッグバンク、比較トキシコゲノミクス・データベース(CTD)、および化学の相互作用のための検索ツール(STITCH)を使用して、DTIを体系的に抽出し、検索エージェントはバイオメディカル文献と相互作用して、計算予測を注釈し、検証する。
これらのエージェントからの出力を統合することで、外部データベースを含む多様なデータソースを効果的に活用し、実行可能な再資源化候補を提案する。
薬物と薬物の相互作用を予測できるだけでなく、従来の薬物発見手法にかかわる時間とコストを削減できる可能性を示す予備的な研究結果が得られた。
本稿では, バイオメディカル研究におけるマルチエージェントシステムのスケーラビリティと, 薬物再資源化におけるイノベーションの推進における役割について述べる。
提案手法は, 薬物再資源化の可能性を予測する既存の手法に勝るだけでなく, より効率的かつ費用対効果の高い薬物発見プロセスの道を開くことができる。
関連論文リスト
- LLM Agent Swarm for Hypothesis-Driven Drug Discovery [2.7036595757881323]
ファーマシュワーム(PharmaSwarm)は、新規な薬物標的および鉛化合物の仮説を提唱し、検証し、洗練するために、特殊な「エージェント」を編成する統合マルチエージェントフレームワークである。
PharmaSwarmはAIの副操縦士として機能することで、翻訳研究を加速し、従来のパイプラインよりも効率的に高信頼の仮説を提供することができる。
論文 参考訳(メタデータ) (2025-04-24T22:27:50Z) - TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic Analysis (TA) は、構造化されていないテキストデータの潜在意味を明らかにするために広く使われている定性的手法である。
本稿では,多エージェントLEMを用いた人間とAIの協調的テーマ分析フレームワークTAMAを提案する。
TAMA は既存の LLM 支援TA アプローチよりも優れており,高い主題的ヒット率,カバレッジ,独特性を実現している。
論文 参考訳(メタデータ) (2025-03-26T15:58:16Z) - Collaborative Expert LLMs Guided Multi-Objective Molecular Optimization [51.104444856052204]
我々は,多目的分子最適化のための協調型大規模言語モデル(LLM)システムであるMultiMolを提案する。
6つの多目的最適化タスクに対する評価において、MultiMolは既存の手法を著しく上回り、82.30%の成功率を達成した。
論文 参考訳(メタデータ) (2025-03-05T13:47:55Z) - RAG-Enhanced Collaborative LLM Agents for Drug Discovery [28.025359322895905]
CLADDは、薬物発見タスクに適した、検索増強世代(RAG)内蔵のエージェントシステムである。
汎用LLMやドメイン固有のLLM、そして従来のディープラーニングのアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2025-02-22T00:12:52Z) - Exploring Multi-Modal Integration with Tool-Augmented LLM Agents for Precise Causal Discovery [45.777770849667775]
因果推論は、スマートヘルス、薬物発見のためのAI、AIOpsなど、ドメイン間の意思決定の必須基盤である。
ツール拡張 LLM を利用したマルチエージェントシステムである MATMCD を紹介する。
以上の結果から,マルチモーダル化による因果発見の可能性が示唆された。
論文 参考訳(メタデータ) (2024-12-18T09:50:00Z) - DrugAgent: Automating AI-aided Drug Discovery Programming through LLM Multi-Agent Collaboration [31.892593155710625]
本稿では,薬物発見における機械学習(ML)プログラムの自動化を目的としたマルチエージェントフレームワークであるDrarmAgentを紹介する。
DrugAgentは、特定の要件を特定し、ドメイン固有のツールを構築することで、ドメインの専門知識を取り入れている。
例えば、DarmAgentは、データ取得からADMET予測タスクのパフォーマンス評価まで、MLプログラミングパイプラインをエンドツーエンドで完了し、最終的に最良のモデルを選択することができる。
論文 参考訳(メタデータ) (2024-11-24T03:06:59Z) - MIN: Multi-channel Interaction Network for Drug-Target Interaction with Protein Distillation [64.4838301776267]
マルチチャネルインタラクションネットワーク(MIN)はドラッグ・ターゲット・インタラクション(DTI)を予測するための新しいフレームワークである
MINには、表現学習モジュールとマルチチャネルインタラクションモジュールが組み込まれている。
MINはDTI予測の強力なツールであるだけでなく、タンパク質結合部位の予測に関する新たな洞察も提供する。
論文 参考訳(メタデータ) (2024-11-23T05:38:36Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
大規模言語モデル(LLM)の創薬・開発分野への統合は、重要なパラダイムシフトである。
これらの先進的な計算モデルが、ターゲット・ディスリーズ・リンクを明らかにし、複雑なバイオメディカルデータを解釈し、薬物分子設計を強化し、薬物の有効性と安全性を予測し、臨床治験プロセスを促進する方法について検討する。
論文 参考訳(メタデータ) (2024-09-06T02:03:38Z) - Inquire, Interact, and Integrate: A Proactive Agent Collaborative Framework for Zero-Shot Multimodal Medical Reasoning [21.562034852024272]
医療における大規模言語モデル(LLM)の導入は、大きな研究関心を集めている。
ほとんどの最先端のLCMは、マルチモーダル入力を直接処理できない、単調でテキストのみのモデルである。
医療マルチモーダル推論問題を解決するために,マルチモーダル医療協調推論フレームワーク textbfMultiMedRes を提案する。
論文 参考訳(メタデータ) (2024-05-19T18:26:11Z) - Learning to Describe for Predicting Zero-shot Drug-Drug Interactions [54.172575323610175]
薬物と薬物の相互作用は同時投与の有効性を損なう可能性がある。
従来のDDI予測の計算手法では、知識不足のため、新しい薬物の相互作用を捉えることができない可能性がある。
言語モデルに基づくDDI予測器と強化学習(RL)に基づく情報セレクタを用いたテキストDDIを提案する。
論文 参考訳(メタデータ) (2024-03-13T09:42:46Z) - Multiscale Topology in Interactomic Network: From Transcriptome to
Antiaddiction Drug Repurposing [0.3683202928838613]
米国における薬物依存の激化は、革新的な治療戦略の緊急の必要性を浮き彫りにしている。
本研究は,オピオイドおよびコカイン依存症治療の薬物再服用候補を探索するための,革新的で厳格な戦略に着手した。
論文 参考訳(メタデータ) (2023-12-03T04:01:38Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
本稿では,新興医薬品の相互作用を効果的に予測できるグラフニューラルネットワーク(GNN)であるEmerGNNを提案する。
EmerGNNは、薬物ペア間の経路を抽出し、ある薬物から他の薬物へ情報を伝達し、関連する生物学的概念を経路に組み込むことで、薬物のペアワイズ表現を学習する。
全体として、EmerGNNは、新興薬物の相互作用を予測する既存のアプローチよりも精度が高く、バイオメディカルネットワーク上で最も関連性の高い情報を特定できる。
論文 参考訳(メタデータ) (2023-11-15T06:34:00Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
薬物発見の鍵となる側面は、新規な薬物標的相互作用(DT)の同定である。
タンパク質-リガンド相互作用は結合親和性として知られる結合強度の連続性を示す。
性能向上のための新しい改良を提案する。
論文 参考訳(メタデータ) (2023-10-06T05:00:25Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
本稿では,入力モーダル性と出力タスクを関連付けた冗長性,特異性,シナジーの度合いを定量化する情報理論手法を提案する。
PID推定を検証するために、PIDが知られている合成データセットと大規模マルチモーダルベンチマークの両方で広範な実験を行う。
本研究では,(1)マルチモーダルデータセット内の相互作用の定量化,(2)マルチモーダルモデルで捉えた相互作用の定量化,(3)モデル選択の原理的アプローチ,(4)実世界のケーススタディの3つにその有用性を示す。
論文 参考訳(メタデータ) (2023-02-23T18:59:05Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - KGML-xDTD: A Knowledge Graph-based Machine Learning Framework for Drug
Treatment Prediction and Mechanism Description [11.64859287146094]
KGML-xDTD(知識グラフに基づく機械学習フレームワーク)を提案する。
グラフベースの強化学習プロセスにおける中間指導として,知識と公開に基づく情報を活用し,生物学的に意味のある「実証経路」を抽出する。
論文 参考訳(メタデータ) (2022-11-30T17:05:22Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
DDI予測のための新しいマルチビュードラッグサブ構造ネットワーク(MSN-DDI)を提案する。
MSN-DDIは、単一の薬物(イントラビュー)と薬物ペア(インタービュー)の両方の表現から化学的サブ構造を同時に学習し、そのサブ構造を利用して、薬物表現を反復的に更新する。
総合的な評価では、MSN-DDIは、トランスダクティブ・セッティングの下で比較的改善された19.32%と99%以上の精度を達成することで、既存の薬物に対するDDI予測をほぼ解決したことを示している。
論文 参考訳(メタデータ) (2022-03-28T05:44:29Z) - Multiple Similarity Drug-Target Interaction Prediction with Random Walks
and Matrix Factorization [16.41618129467975]
我々は、異なるレイヤが薬物と標的の異なる類似度メトリクスに対応する、多層ネットワークの視点を捉えている。
複数のビューでキャプチャされたトポロジ情報を完全に活用するために,DTI予測のための最適化フレームワーク MDMF を開発した。
このフレームワークは、すべての超分子層にまたがる高次近接を維持するだけでなく、内部積との相互作用を近似する薬物や標的のベクトル表現を学習する。
論文 参考訳(メタデータ) (2022-01-24T08:02:05Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
本稿では,抗がん剤感受性の予測にトランスファーラーニングを適用した。
我々は、ソースデータセット上で予測モデルをトレーニングし、ターゲットデータセット上でそれを洗練する古典的な転送学習フレームワークを適用した。
アンサンブル転送学習パイプラインは、LightGBMと異なるアーキテクチャを持つ2つのディープニューラルネットワーク(DNN)モデルを使用して実装されている。
論文 参考訳(メタデータ) (2020-05-13T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。