論文の概要: NeurIPS 2024 ML4CFD Competition: Harnessing Machine Learning for Computational Fluid Dynamics in Airfoil Design
- arxiv url: http://arxiv.org/abs/2407.01641v1
- Date: Sun, 30 Jun 2024 21:48:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 19:52:16.201054
- Title: NeurIPS 2024 ML4CFD Competition: Harnessing Machine Learning for Computational Fluid Dynamics in Airfoil Design
- Title(参考訳): NeurIPS 2024 ML4CFD competition: Harnessing Machine Learning for Computational fluid Dynamics in Airfoil Design
- Authors: Mouadh Yagoubi, David Danan, Milad Leyli-abadi, Jean-Patrick Brunet, Jocelyn Ahmed Mazari, Florent Bonnet, maroua gmati, Asma Farjallah, Paola Cinnella, Patrick Gallinari, Marc Schoenauer,
- Abstract要約: この課題は、エアフォイル設計シミュレーション(Airfoil design simulation)という、確立された物理応用の基礎となる課題に焦点を当てている。
この競争はML駆動のサロゲート法を探求する先駆的な試みである。
このコンペティションは、参加するすべてのソリューションに対して、オンライントレーニングと評価を提供する。
- 参考スコア(独自算出の注目度): 15.301599529509057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of machine learning (ML) techniques for addressing intricate physics problems is increasingly recognized as a promising avenue for expediting simulations. However, assessing ML-derived physical models poses a significant challenge for their adoption within industrial contexts. This competition is designed to promote the development of innovative ML approaches for tackling physical challenges, leveraging our recently introduced unified evaluation framework known as Learning Industrial Physical Simulations (LIPS). Building upon the preliminary edition held from November 2023 to March 2024, this iteration centers on a task fundamental to a well-established physical application: airfoil design simulation, utilizing our proposed AirfRANS dataset. The competition evaluates solutions based on various criteria encompassing ML accuracy, computational efficiency, Out-Of-Distribution performance, and adherence to physical principles. Notably, this competition represents a pioneering effort in exploring ML-driven surrogate methods aimed at optimizing the trade-off between computational efficiency and accuracy in physical simulations. Hosted on the Codabench platform, the competition offers online training and evaluation for all participating solutions.
- Abstract(参考訳): 複雑な物理問題に対処するための機械学習(ML)技術の統合は、シミュレーションを高速化するための有望な道としてますます認識されている。
しかし、ML由来の物理モデルを評価することは、産業的文脈において採用される上で大きな課題となる。
このコンペティションは、最近導入されたLearning Industrial Physical Simulations (LIPS) と呼ばれる統合評価フレームワークを活用し、物理的な課題に対処するための革新的なMLアプローチの開発を促進するために設計されている。
2023年11月から2024年3月までに開催された予備版に基づいて、このイテレーションはエアフォイル設計シミュレーション(AirfRANSデータセット)という、確立された物理的応用の基礎となるタスクに重点を置いている。
このコンペティションは、MLの精度、計算効率、アウトオフ・ディストリビューション性能、および物理原理の遵守を含む様々な基準に基づいて、ソリューションを評価する。
この競争は、計算効率と物理シミュレーションの精度のトレードオフを最適化することを目的としたML駆動サロゲート手法の先駆的な試みである。
Codabenchプラットフォームでホストされているこのコンペティションは、参加するすべてのソリューションに対するオンライントレーニングと評価を提供する。
関連論文リスト
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Machine Learning Optimized Approach for Parameter Selection in MESHFREE Simulations [0.0]
従来のメッシュベースのアプローチに代わる魅力的な代替手段として、メッシュフリーシミュレーション手法が登場している。
機械学習(ML)とFraunhoferのMESHFREEソフトウェアを組み合わせた研究の概要について概説する。
本稿では,MESHFREEシミュレーションデータに能動的学習,回帰木を用いたML最適化手法を提案する。
論文 参考訳(メタデータ) (2024-03-20T15:29:59Z) - ML4PhySim : Machine Learning for Physical Simulations Challenge (The
airfoil design) [16.140736542578562]
この競争の目的は、物理的な問題を解決するための新しいML技術の開発を促進することである。
本研究では,AirfRANSというデータセットを用いて,翼設計シミュレーションを表現するタスクの学習を提案する。
我々の知る限りでは、これはMLベースのサロゲートアプローチを使用して物理シミュレーションのトレードオフ計算コスト/精度を改善するための最初の競争である。
論文 参考訳(メタデータ) (2024-03-03T22:10:21Z) - Replication Study: Enhancing Hydrological Modeling with Physics-Guided
Machine Learning [0.0]
現在の水理モデリング手法は、データ駆動機械学習アルゴリズムと従来の物理モデルを組み合わせたものである。
結果予測におけるMLの精度にもかかわらず、科学的知識の統合は信頼性の高い予測には不可欠である。
本研究では,概念的水文モデルのプロセス理解とMLアルゴリズムの予測効率を融合した物理インフォームド機械学習モデルを提案する。
論文 参考訳(メタデータ) (2024-02-21T16:26:59Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
本稿では,製造シミュレーションのための量子コンピューティングによるサービスエコシステムの枠組みを提案する。
我々は,これらの新しい計算パラダイムを定量的に評価することを目的とした2つの高価値ユースケースを分析した。
論文 参考訳(メタデータ) (2024-01-19T11:04:14Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - EFaR 2023: Efficient Face Recognition Competition [51.77649060180531]
バイオメトリックス国際会議(IJCB 2023)における効率的な顔認識コンペティション(EFaR)の概要について述べる。
この競技会は6つの異なるチームから17の応募を受けた。
提案したソリューションは、様々なベンチマークで達成された検証精度の重み付けスコアと、浮動小数点演算数とモデルサイズによって与えられるデプロイ可能性に基づいてランク付けされる。
論文 参考訳(メタデータ) (2023-08-08T09:58:22Z) - Efficiency Pentathlon: A Standardized Arena for Efficiency Evaluation [82.85015548989223]
Pentathlonは、モデル効率の総合的で現実的な評価のためのベンチマークである。
Pentathlonは、モデルライフサイクルにおける計算の大部分を占める推論に焦点を当てている。
レイテンシ、スループット、メモリオーバーヘッド、エネルギー消費など、さまざまな効率面をターゲットにしたメトリクスが組み込まれている。
論文 参考訳(メタデータ) (2023-07-19T01:05:33Z) - Machine Learning in Aerodynamic Shape Optimization [0.0]
最先端の機械学習アプローチが空気力学的形状最適化(ASO)にどのように役立つかを示す。
機械学習のトレーニング費用がかかるため、大規模な設計の実践的な最適化は依然として課題である。
MLモデル構築とASOの事前経験と知識との深い結合は、MLモデルを効果的に訓練するために推奨される。
論文 参考訳(メタデータ) (2022-02-15T02:23:21Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
我々は、統一されたベンチマークと評価プロトコルへの一歩を踏み出すために、一連のベンチマーク問題を導入する。
本稿では,4つの物理系と,広く使用されている古典的時間ベースおよび代表的なデータ駆動手法のコレクションを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:39:09Z) - Integrating Machine Learning with HPC-driven Simulations for Enhanced
Student Learning [0.0]
シミュレーション出力を生成するためのHPC駆動型シミュレーションとMLサロゲート手法の両方をサポートするWebアプリケーションを開発した。
授業内フィードバックと調査を通じて評価した結果,ML強化ツールは動的かつ応答性のあるシミュレーション環境を提供することがわかった。
論文 参考訳(メタデータ) (2020-08-24T22:48:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。