論文の概要: Replication Study: Enhancing Hydrological Modeling with Physics-Guided
Machine Learning
- arxiv url: http://arxiv.org/abs/2402.13911v1
- Date: Wed, 21 Feb 2024 16:26:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 14:44:25.452572
- Title: Replication Study: Enhancing Hydrological Modeling with Physics-Guided
Machine Learning
- Title(参考訳): 複製研究:物理誘導機械学習による水文モデリングの強化
- Authors: Mostafa Esmaeilzadeh, Melika Amirzadeh
- Abstract要約: 現在の水理モデリング手法は、データ駆動機械学習アルゴリズムと従来の物理モデルを組み合わせたものである。
結果予測におけるMLの精度にもかかわらず、科学的知識の統合は信頼性の高い予測には不可欠である。
本研究では,概念的水文モデルのプロセス理解とMLアルゴリズムの予測効率を融合した物理インフォームド機械学習モデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current hydrological modeling methods combine data-driven Machine Learning
(ML) algorithms and traditional physics-based models to address their
respective limitations incorrect parameter estimates from rigid physics-based
models and the neglect of physical process constraints by ML algorithms.
Despite the accuracy of ML in outcome prediction, the integration of scientific
knowledge is crucial for reliable predictions. This study introduces a Physics
Informed Machine Learning (PIML) model, which merges the process understanding
of conceptual hydrological models with the predictive efficiency of ML
algorithms. Applied to the Anandapur sub-catchment, the PIML model demonstrates
superior performance in forecasting monthly streamflow and actual
evapotranspiration over both standalone conceptual models and ML algorithms,
ensuring physical consistency of the outputs. This study replicates the
methodologies of Bhasme, P., Vagadiya, J., & Bhatia, U. (2022) from their
pivotal work on Physics Informed Machine Learning for hydrological processes,
utilizing their shared code and datasets to further explore the predictive
capabilities in hydrological modeling.
- Abstract(参考訳): 現在の水文学モデリング手法は、データ駆動機械学習(ML)アルゴリズムと従来の物理モデルを組み合わせて、剛体物理学に基づくモデルとMLアルゴリズムによる物理プロセス制約の無視から、それぞれの制約を誤ってパラメータ推定する。
結果予測におけるMLの精度にもかかわらず、科学的知識の統合は信頼性の高い予測には不可欠である。
本研究では,概念的水文学モデルのプロセス理解とMLアルゴリズムの予測効率を融合した物理インフォームド機械学習(PIML)モデルを提案する。
Anandapurサブキャッシュに応用すると、PIMLモデルは、スタンドアロンの概念モデルとMLアルゴリズムの両方に対して月間ストリームフローと実際の蒸発散を予測し、出力の物理的整合性を保証する。
本研究は,水文モデリングの予測能力をさらに探究するために,水文プロセスに関する物理情報機械学習の重要な研究から,bhasme, p., vagadiya, j., and bhatia, u. (2022) の方法論を再現したものである。
関連論文リスト
- Methods to improve run time of hydrologic models: opportunities and challenges in the machine learning era [0.0]
機械学習(ML)を水理モデルに応用することは、未熟である。
物理ベースのモデルよりもMLアルゴリズムを採用する主な理由の1つは、計算効率の優位性と様々なデータセットを扱う柔軟性である。
本稿では,水文モデルにMLを採用する機会と課題について述べる。その後,物理モデルによるシミュレーション時間の改善と今後の課題について述べる。
論文 参考訳(メタデータ) (2024-08-05T05:27:19Z) - Electronic excited states from physically-constrained machine learning [0.0]
本稿では,実効ハミルトニアンの対称性適応MLモデルをトレーニングし,量子力学計算から電子励起を再現する統合モデリング手法を提案する。
結果として得られるモデルは、トレーニングされた分子よりもずっと大きく、より複雑な分子を予測できる。
論文 参考訳(メタデータ) (2023-11-01T20:49:59Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - Enhancing predictive skills in physically-consistent way: Physics
Informed Machine Learning for Hydrological Processes [1.0635248457021496]
本研究では,概念的水文モデルのプロセス理解と最先端MLモデルの予測能力を組み合わせた物理インフォームド機械学習(PIML)モデルを開発する。
提案したモデルを用いて,インドのナルマダ川流域における目標(流れ流)と中間変数(実際の蒸発吸引)の月次時間系列を予測する。
論文 参考訳(メタデータ) (2021-04-22T12:13:42Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: Generalized Formulations [5.827236278192557]
本研究では,物理正規化ガウス過程(PRGP)という新しいモデリングフレームワークを提案する。
この新しいアプローチは、物理モデル、すなわち古典的なトラフィックフローモデルをガウスのプロセスアーキテクチャにエンコードし、機械学習のトレーニングプロセスを規則化する。
提案手法の有効性を証明するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-07-14T17:27:23Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
本研究では,古典的トラフィックフローモデルを機械学習アーキテクチャにエンコードする,物理正規化機械学習(PRML)という新しいモデリングフレームワークを提案する。
提案手法の有効性を実証するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-02-06T17:22:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。