NeurIPS 2024 ML4CFD Competition: Harnessing Machine Learning for Computational Fluid Dynamics in Airfoil Design
- URL: http://arxiv.org/abs/2407.01641v1
- Date: Sun, 30 Jun 2024 21:48:38 GMT
- Title: NeurIPS 2024 ML4CFD Competition: Harnessing Machine Learning for Computational Fluid Dynamics in Airfoil Design
- Authors: Mouadh Yagoubi, David Danan, Milad Leyli-abadi, Jean-Patrick Brunet, Jocelyn Ahmed Mazari, Florent Bonnet, maroua gmati, Asma Farjallah, Paola Cinnella, Patrick Gallinari, Marc Schoenauer,
- Abstract summary: The challenge centers on a task fundamental to a well-established physical application: airfoil design simulation.
This competition represents a pioneering effort in exploring ML-driven surrogate methods.
The competition offers online training and evaluation for all participating solutions.
- Score: 15.301599529509057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of machine learning (ML) techniques for addressing intricate physics problems is increasingly recognized as a promising avenue for expediting simulations. However, assessing ML-derived physical models poses a significant challenge for their adoption within industrial contexts. This competition is designed to promote the development of innovative ML approaches for tackling physical challenges, leveraging our recently introduced unified evaluation framework known as Learning Industrial Physical Simulations (LIPS). Building upon the preliminary edition held from November 2023 to March 2024, this iteration centers on a task fundamental to a well-established physical application: airfoil design simulation, utilizing our proposed AirfRANS dataset. The competition evaluates solutions based on various criteria encompassing ML accuracy, computational efficiency, Out-Of-Distribution performance, and adherence to physical principles. Notably, this competition represents a pioneering effort in exploring ML-driven surrogate methods aimed at optimizing the trade-off between computational efficiency and accuracy in physical simulations. Hosted on the Codabench platform, the competition offers online training and evaluation for all participating solutions.
Related papers
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Machine Learning Optimized Approach for Parameter Selection in MESHFREE Simulations [0.0]
Meshfree simulation methods are emerging as compelling alternatives to conventional mesh-based approaches.
We provide a comprehensive overview of our research combining Machine Learning (ML) and Fraunhofer's MESHFREE software.
We introduce a novel ML-optimized approach, using active learning, regression trees, and visualization on MESHFREE simulation data.
arXiv Detail & Related papers (2024-03-20T15:29:59Z) - ML4PhySim : Machine Learning for Physical Simulations Challenge (The
airfoil design) [16.140736542578562]
The aim of this competition is to encourage the development of new ML techniques to solve physical problems.
We propose learning a task representing the airfoil design simulation, using a dataset called AirfRANS.
To the best of our knowledge, this is the first competition addressing the use of ML-based surrogate approaches to improve the trade-off computational cost/accuracy of physical simulation.
arXiv Detail & Related papers (2024-03-03T22:10:21Z) - Replication Study: Enhancing Hydrological Modeling with Physics-Guided
Machine Learning [0.0]
Current hydrological modeling methods combine data-driven Machine Learning algorithms and traditional physics-based models.
Despite the accuracy of ML in outcome prediction, the integration of scientific knowledge is crucial for reliable predictions.
This study introduces a Physics Informed Machine Learning model, which merges the process understanding of conceptual hydrological models with the predictive efficiency of ML algorithms.
arXiv Detail & Related papers (2024-02-21T16:26:59Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
We propose a framework for a quantum computing-enhanced service ecosystem for simulation in manufacturing.
We analyse two high-value use cases with the aim of a quantitative evaluation of these new computing paradigms for industrially-relevant settings.
arXiv Detail & Related papers (2024-01-19T11:04:14Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - EFaR 2023: Efficient Face Recognition Competition [51.77649060180531]
The paper presents the summary of the Efficient Face Recognition Competition (EFaR) held at the 2023 International Joint Conference on Biometrics (IJCB 2023)
The competition received 17 submissions from 6 different teams.
The submitted solutions are ranked based on a weighted score of the achieved verification accuracies on a diverse set of benchmarks, as well as the deployability given by the number of floating-point operations and model size.
arXiv Detail & Related papers (2023-08-08T09:58:22Z) - Efficiency Pentathlon: A Standardized Arena for Efficiency Evaluation [82.85015548989223]
Pentathlon is a benchmark for holistic and realistic evaluation of model efficiency.
Pentathlon focuses on inference, which accounts for a majority of the compute in a model's lifecycle.
It incorporates a suite of metrics that target different aspects of efficiency, including latency, throughput, memory overhead, and energy consumption.
arXiv Detail & Related papers (2023-07-19T01:05:33Z) - Machine Learning in Aerodynamic Shape Optimization [0.0]
We show how cutting-edge machine learning approaches can benefit aerodynamic shape optimization (ASO)
Practical large-scale design optimizations remain a challenge due to the costly machine learning training expense.
A deep coupling of ML model construction with ASO prior experience and knowledge is recommended to train ML models effectively.
arXiv Detail & Related papers (2022-02-15T02:23:21Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Integrating Machine Learning with HPC-driven Simulations for Enhanced
Student Learning [0.0]
We develop a web application that supports both HPC-driven simulation and the ML surrogate methods to produce simulation outputs.
The evaluation of the tool via in-classroom student feedback and surveys shows that the ML-enhanced tool provides a dynamic and responsive simulation environment.
arXiv Detail & Related papers (2020-08-24T22:48:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.