MIXPINN: Mixed-Material Simulations by Physics-Informed Neural Network
- URL: http://arxiv.org/abs/2503.13123v1
- Date: Mon, 17 Mar 2025 12:48:29 GMT
- Title: MIXPINN: Mixed-Material Simulations by Physics-Informed Neural Network
- Authors: Xintian Yuan, Yunke Ao, Boqi Chen, Philipp Fuernstahl,
- Abstract summary: Traditional Finite Element Method (FEM)-based simulations are computationally expensive and impractical for real-time scenarios.<n>We introduce MIXPINN, a physics-informed Graph Neural Network (GNN) framework for mixed-material simulations.<n>By leveraging a graph-based representation of biomechanical structures, MIXPINN learns high-fidelity deformations from FEM-generated data and achieves real-time inference with sub-millimeter accuracy.
- Score: 1.275845610262865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulating the complex interactions between soft tissues and rigid anatomy is critical for applications in surgical training, planning, and robotic-assisted interventions. Traditional Finite Element Method (FEM)-based simulations, while accurate, are computationally expensive and impractical for real-time scenarios. Learning-based approaches have shown promise in accelerating predictions but have fallen short in modeling soft-rigid interactions effectively. We introduce MIXPINN, a physics-informed Graph Neural Network (GNN) framework for mixed-material simulations, explicitly capturing soft-rigid interactions using graph-based augmentations. Our approach integrates Virtual Nodes (VNs) and Virtual Edges (VEs) to enhance rigid body constraint satisfaction while preserving computational efficiency. By leveraging a graph-based representation of biomechanical structures, MIXPINN learns high-fidelity deformations from FEM-generated data and achieves real-time inference with sub-millimeter accuracy. We validate our method in a realistic clinical scenario, demonstrating superior performance compared to baseline GNN models and traditional FEM methods. Our results show that MIXPINN reduces computational cost by an order of magnitude while maintaining high physical accuracy, making it a viable solution for real-time surgical simulation and robotic-assisted procedures.
Related papers
- GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Graph Neural Networks for modelling breast biomechanical compression [0.08192907805418582]
Breast compression simulation is essential for accurate image registration from 3D modalities to X-ray procedures like mammography.
It accounts for tissue shape and position changes due to compression, ensuring precise alignment and improved analysis.
Finite Element Analysis (FEA) is reliable for approximating soft tissue deformation, it struggles with balancing accuracy and computational efficiency.
Recent studies have used data-driven models trained on FEA results to speed up tissue deformation predictions.
We propose to explore Physics-based Graph Neural Networks (PhysGNN) for breast compression simulation.
arXiv Detail & Related papers (2024-11-10T20:59:23Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Differentiable Neural-Integrated Meshfree Method for Forward and Inverse Modeling of Finite Strain Hyperelasticity [1.290382979353427]
The present study aims to extend the novel physics-informed machine learning approach, specifically the neural-integrated meshfree (NIM) method, to model finite-strain problems.
Thanks to the inherent differentiable programming capabilities, NIM can circumvent the need for derivation of Newton-Raphson linearization of the variational form.
NIM is applied to identify heterogeneous mechanical properties of hyperelastic materials from strain data, validating its effectiveness in the inverse modeling of nonlinear materials.
arXiv Detail & Related papers (2024-07-15T19:15:18Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Real-time simulation of viscoelastic tissue behavior with physics-guided
deep learning [0.8250374560598492]
We propose a deep learning method for predicting displacement fields of soft tissues with viselastic properties.
The proposed method achieves a better accuracy over the conventional CNN models.
It is hoped that the present investigation will help in filling the gap in applying deep learning in virtual reality.
arXiv Detail & Related papers (2023-01-11T18:17:10Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - What Robot do I Need? Fast Co-Adaptation of Morphology and Control using
Graph Neural Networks [7.261920381796185]
A major challenge for the application of co-adaptation methods to the real world is the simulation-to-reality-gap.
This paper presents a new approach combining classic high-frequency deep neural networks with computational expensive Graph Neural Networks for the data-efficient co-adaptation of agents.
arXiv Detail & Related papers (2021-11-03T17:41:38Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Leveraging Vision and Kinematics Data to Improve Realism of Biomechanic
Soft-tissue Simulation for Robotic Surgery [13.657060682152409]
We investigate how live data acquired during any robotic endoscopic surgical procedure may be used to correct for inaccurate FEM simulation results.
We use an open-source da Vinci Surgical System to probe a soft-tissue phantom and replay the interaction in simulation.
We train the network to correct for the difference between the predicted mesh position and the measured point cloud.
arXiv Detail & Related papers (2020-03-14T00:16:08Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.