Replication Study: Enhancing Hydrological Modeling with Physics-Guided
Machine Learning
- URL: http://arxiv.org/abs/2402.13911v1
- Date: Wed, 21 Feb 2024 16:26:59 GMT
- Title: Replication Study: Enhancing Hydrological Modeling with Physics-Guided
Machine Learning
- Authors: Mostafa Esmaeilzadeh, Melika Amirzadeh
- Abstract summary: Current hydrological modeling methods combine data-driven Machine Learning algorithms and traditional physics-based models.
Despite the accuracy of ML in outcome prediction, the integration of scientific knowledge is crucial for reliable predictions.
This study introduces a Physics Informed Machine Learning model, which merges the process understanding of conceptual hydrological models with the predictive efficiency of ML algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current hydrological modeling methods combine data-driven Machine Learning
(ML) algorithms and traditional physics-based models to address their
respective limitations incorrect parameter estimates from rigid physics-based
models and the neglect of physical process constraints by ML algorithms.
Despite the accuracy of ML in outcome prediction, the integration of scientific
knowledge is crucial for reliable predictions. This study introduces a Physics
Informed Machine Learning (PIML) model, which merges the process understanding
of conceptual hydrological models with the predictive efficiency of ML
algorithms. Applied to the Anandapur sub-catchment, the PIML model demonstrates
superior performance in forecasting monthly streamflow and actual
evapotranspiration over both standalone conceptual models and ML algorithms,
ensuring physical consistency of the outputs. This study replicates the
methodologies of Bhasme, P., Vagadiya, J., & Bhatia, U. (2022) from their
pivotal work on Physics Informed Machine Learning for hydrological processes,
utilizing their shared code and datasets to further explore the predictive
capabilities in hydrological modeling.
Related papers
- Methods to improve run time of hydrologic models: opportunities and challenges in the machine learning era [0.0]
The application of Machine Learning (ML) to hydrologic modeling is fledgling.
One of the key reasons to adopt ML algorithms over physics-based models is its computational efficiency advantage and flexibility to work with various data sets.
This paper covers the opportunities and challenges of adopting ML for hydrological modeling and subsequently how it can help to improve the simulation time of physics-based models and future works that should be addressed.
arXiv Detail & Related papers (2024-08-05T05:27:19Z) - Electronic excited states from physically-constrained machine learning [0.0]
We present an integrated modeling approach, in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation.
The resulting model can make predictions for molecules that are much larger and more complex than those that it is trained on.
arXiv Detail & Related papers (2023-11-01T20:49:59Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Enhancing predictive skills in physically-consistent way: Physics
Informed Machine Learning for Hydrological Processes [1.0635248457021496]
We develop a Physics Informed Machine Learning (PIML) model that combines the process understanding of conceptual hydrological model with predictive abilities of state-of-the-art ML models.
We apply the proposed model to predict the monthly time series of the target (streamflow) and intermediate variables (actual evapotranspiration) in the Narmada river basin in India.
arXiv Detail & Related papers (2021-04-22T12:13:42Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: Generalized Formulations [5.827236278192557]
This study presents a new modeling framework, named physics regularized Gaussian process (PRGP)
This novel approach can encode physics models, i.e., classical traffic flow models, into the Gaussian process architecture and so as to regularize the Machine Learning training process.
To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset that is collected from a stretch of I-15 freeway, Utah.
arXiv Detail & Related papers (2020-07-14T17:27:23Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
This study presents a new modeling framework, named physics regularized machine learning (PRML), to encode classical traffic flow models into the machine learning architecture.
To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset which is collected from a stretch of I-15 freeway, Utah.
arXiv Detail & Related papers (2020-02-06T17:22:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.