Everything that can be learned about a causal structure with latent variables by observational and interventional probing schemes
- URL: http://arxiv.org/abs/2407.01686v1
- Date: Mon, 1 Jul 2024 18:01:07 GMT
- Title: Everything that can be learned about a causal structure with latent variables by observational and interventional probing schemes
- Authors: Marina Maciel Ansanelli, Elie Wolfe, Robert W. Spekkens,
- Abstract summary: We find that two causal structures remain indistinguishable if they are both associated with the same mDAG structure.
We also consider the question of when one causal structure dominates another in the sense that it can realize all of the joint distributions probability.
- Score: 0.9217021281095907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: What types of differences among causal structures with latent variables are impossible to distinguish by statistical data obtained by probing each visible variable? If the probing scheme is simply passive observation, then it is well-known that many different causal structures can realize the same joint probability distributions. Even for the simplest case of two visible variables, for instance, one cannot distinguish between one variable being a causal parent of the other and the two variables sharing a latent common cause. However, it is possible to distinguish between these two causal structures if we have recourse to more powerful probing schemes, such as the possibility of intervening on one of the variables and observing the other. Herein, we address the question of which causal structures remain indistinguishable even given the most informative types of probing schemes on the visible variables. We find that two causal structures remain indistinguishable if and only if they are both associated with the same mDAG structure (as defined by Evans (2016)). We also consider the question of when one causal structure dominates another in the sense that it can realize all of the joint probability distributions that can be realized by the other using a given probing scheme. (Equivalence of causal structures is the special case of mutual dominance.) Finally, we investigate to what extent one can weaken the probing schemes implemented on the visible variables and still have the same discrimination power as a maximally informative probing scheme.
Related papers
- The Observational Partial Order of Causal Structures with Latent Variables [0.9217021281095907]
We consider the problem of determining the partial order of equivalence classes of causal structures with latent variables.
We find evidence that as one increases the number of visible variables, the equivalence classes satisfying nontrivial inequality constraints become ubiquitous.
arXiv Detail & Related papers (2025-02-11T19:00:58Z) - Learning Discrete Latent Variable Structures with Tensor Rank Conditions [30.292492090200984]
Unobserved discrete data are ubiquitous in many scientific disciplines, and how to learn the causal structure of these latent variables is crucial for uncovering data patterns.
Most studies focus on the linear latent variable model or impose strict constraints on latent structures, which fail to address cases in discrete data involving non-linear relationships or complex latent structures.
We explore a tensor rank condition on contingency tables for an observed variable set $mathbfX_p$, showing that the rank is determined by the minimum support of a specific conditional set.
One can locate the latent variable through probing the rank on different observed variables
arXiv Detail & Related papers (2024-06-11T07:25:17Z) - A Versatile Causal Discovery Framework to Allow Causally-Related Hidden
Variables [28.51579090194802]
We introduce a novel framework for causal discovery that accommodates the presence of causally-related hidden variables almost everywhere in the causal network.
We develop a Rank-based Latent Causal Discovery algorithm, RLCD, that can efficiently locate hidden variables, determine their cardinalities, and discover the entire causal structure over both measured and hidden ones.
Experimental results on both synthetic and real-world personality data sets demonstrate the efficacy of the proposed approach in finite-sample cases.
arXiv Detail & Related papers (2023-12-18T07:57:39Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discovery aims to find automated search methods for learning causal structures from observational data.
This thesis focuses on two questions in causal discovery: (i) providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, and (ii) under the assumption that the modified version of Strong Faithfulness holds.
arXiv Detail & Related papers (2023-08-15T01:23:42Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Interventional Causal Representation Learning [75.18055152115586]
Causal representation learning seeks to extract high-level latent factors from low-level sensory data.
Can interventional data facilitate causal representation learning?
We show that interventional data often carries geometric signatures of the latent factors' support.
arXiv Detail & Related papers (2022-09-24T04:59:03Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
We focus on the task of causal discovery form observational data.
We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure.
arXiv Detail & Related papers (2021-10-30T21:32:42Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.