論文の概要: Meerkat: Audio-Visual Large Language Model for Grounding in Space and Time
- arxiv url: http://arxiv.org/abs/2407.01851v2
- Date: Wed, 3 Jul 2024 07:01:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 12:55:43.595912
- Title: Meerkat: Audio-Visual Large Language Model for Grounding in Space and Time
- Title(参考訳): Meerkat: 空間と時間のグラウンド化のためのオーディオビジュアル大言語モデル
- Authors: Sanjoy Chowdhury, Sayan Nag, Subhrajyoti Dasgupta, Jun Chen, Mohamed Elhoseiny, Ruohan Gao, Dinesh Manocha,
- Abstract要約: 本稿では、画像と音声のきめ細かい理解を備えた音声視覚LLMであるMeerkatを紹介する。
Meerkatは、音声参照画像の接地、画像案内音声の時間的局所化、音声-視覚的事実チェックといった課題に取り組むことができる。
我々は、これらの下流タスクすべてにおいて、37.12%の相対的な改善で最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 73.7845280328535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging Large Language Models' remarkable proficiency in text-based tasks, recent works on Multi-modal LLMs (MLLMs) extend them to other modalities like vision and audio. However, the progress in these directions has been mostly focused on tasks that only require a coarse-grained understanding of the audio-visual semantics. We present Meerkat, an audio-visual LLM equipped with a fine-grained understanding of image and audio both spatially and temporally. With a new modality alignment module based on optimal transport and a cross-attention module that enforces audio-visual consistency, Meerkat can tackle challenging tasks such as audio referred image grounding, image guided audio temporal localization, and audio-visual fact-checking. Moreover, we carefully curate a large dataset AVFIT that comprises 3M instruction tuning samples collected from open-source datasets, and introduce MeerkatBench that unifies five challenging audio-visual tasks. We achieve state-of-the-art performance on all these downstream tasks with a relative improvement of up to 37.12%.
- Abstract(参考訳): 近年のMLLM(Multi-modal LLM)の研究は、大規模言語モデルのテキストベースタスクにおける卓越した能力を活用して、視覚やオーディオなどの他のモダリティに拡張している。
しかし、これらの方向の進歩は、主に、音声・視覚のセマンティクスの粗い理解だけを必要とするタスクに焦点が当てられている。
本稿では,空間的にも時間的にも,画像と音声のきめ細かい理解を具備した音声視覚LLMであるMeerkatについて紹介する。
最適なトランスポートに基づく新しいモダリティアライメントモジュールと、オーディオと視覚の一貫性を強制するクロスアテンションモジュールにより、Meerkatは、オーディオ参照画像グラウンド、画像ガイド付きオーディオの時間的ローカライゼーション、オーディオと視覚の事実チェックといった課題に取り組むことができる。
さらに,オープンソースデータセットから収集した3Mインストラクションチューニングサンプルを含む大規模データセットAVFITを慎重にキュレートし,難易度の高い5つのタスクを統合するMeerkatBenchを紹介した。
我々は、これらの下流タスクすべてにおいて、37.12%の相対的な改善で最先端のパフォーマンスを達成する。
関連論文リスト
- Large Language Models Are Strong Audio-Visual Speech Recognition Learners [53.142635674428874]
マルチモーダル・大規模言語モデル(MLLM)は,近年,多モーダル理解能力の強化により,研究の焦点となっている。
本稿では,Llama-AVSRを提案する。
我々は,最大公的なAVSRベンチマークであるLSS3に対する提案手法の評価を行い,WERが0.81%,0.77%であるASRとAVSRのタスクに対して,新しい最先端の結果を得た。
論文 参考訳(メタデータ) (2024-09-18T21:17:27Z) - MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders [36.528216873338614]
本稿では,弱いエンコーダの混合物をAudioLLMフレームワークに組み込むことを提案する。
MoWEは、ベースエンコーダに比較的軽量なエンコーダのプールを補足し、音声入力に基づいて選択的にアクティベートし、モデルサイズを大幅に増大させることなく特徴抽出を強化する。
実験の結果,MoWEはマルチタスク性能を効果的に向上し,AudioLLMsの多様なオーディオタスクへの適用性を高めた。
論文 参考訳(メタデータ) (2024-09-10T16:46:18Z) - Where Visual Speech Meets Language: VSP-LLM Framework for Efficient and Context-Aware Visual Speech Processing [56.71450690166821]
LLM(VSP-LLM)を組み込んだビジュアル音声処理という新しいフレームワークを提案する。
VSP-LLMは、視覚音声認識と翻訳のマルチタスクを実行するように設計されている。
ラベル付きデータのたった30時間で訓練されたVSP-LLMは、唇の動きをより効果的に翻訳できることを示す。
論文 参考訳(メタデータ) (2024-02-23T07:21:32Z) - Audio-Visual LLM for Video Understanding [25.963166809113005]
本稿では,視覚的および聴覚的入力を総合的ビデオ理解に用いたマルチモーダル大言語モデルであるAudio-Visual LLMを提案する。
GPT-4から派生した高品質のビデオ命令データセットを提案する。
実験により、オーディオ・ビジュアルのLLMは、様々なビデオ理解タスクで強いゼロショット結果が得られることが実証された。
論文 参考訳(メタデータ) (2023-12-11T02:50:46Z) - Fine-grained Audio-Visual Joint Representations for Multimodal Large
Language Models [25.660343393359565]
本稿では,マルチモーダル大言語モデル(LLM)のための微細な音声-視覚共同表現(FAVOR)学習フレームワークを提案する。
FAVORは、音声入力ストリーム内の音声および音声イベントと、視覚入力ストリーム内の画像またはビデオを、フレームレベルで同時に知覚する。
FAVORのインタラクティブなデモはhttps://github.com/BriansIDP/AudioVisualLLM.gitで公開されている。
論文 参考訳(メタデータ) (2023-10-09T17:00:20Z) - Auto-ACD: A Large-scale Dataset for Audio-Language Representation Learning [50.28566759231076]
高品質なキャプションを持つ音声データセットを構築するための,革新的で自動的なアプローチを提案する。
具体的には、150万以上のオーディオテキストペアからなる、大規模で高品質なオーディオ言語データセットをAuto-ACDとして構築する。
我々はLLMを用いて,抽出したマルチモーダルな手がかりによって導かれる,各音声の連接キャプションを言い換える。
論文 参考訳(メタデータ) (2023-09-20T17:59:32Z) - VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and
Dataset [53.46019570679092]
マルチモーダル理解と生成のためのビジョン・オーディエンジュ・オムニ・ペセプション事前学習モデル(VALOR)を提案する。
VALORは、視覚、音声、言語の関係をエンドツーエンドで共同でモデル化する。
一連の公開モダリティベンチマークにおいて、最先端のパフォーマンスを新たに達成する。
論文 参考訳(メタデータ) (2023-04-17T15:08:15Z) - Accommodating Audio Modality in CLIP for Multimodal Processing [48.83906067348211]
視覚言語モデルCLIPを拡張し、視覚言語モデルAudioのマルチモーダル処理におけるオーディオモダリティに対応する。
具体的には、モーダル間およびモーダル内コントラスト学習を用いて、オーディオと他のモーダル間の相関について検討する。
提案するCLIP4VLAモデルは,ビデオ検索やビデオキャプションなど,さまざまな下流タスクで検証される。
論文 参考訳(メタデータ) (2023-03-12T06:57:01Z) - MAViL: Masked Audio-Video Learners [68.61844803682145]
本研究では,masked Audio-Video Learningers (MAViL) を用いて映像表現の学習を行う。
MAViLによる事前トレーニングにより、音声視覚分類および検索タスクにおいて、モデルの性能が向上する。
自己監督型オーディオ視覚モデルが初めて、ベンチマークの外部監視を使用するモデルよりも優れています。
論文 参考訳(メタデータ) (2022-12-15T18:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。