論文の概要: Abstract Dialectical Frameworks are Boolean Networks (full version)
- arxiv url: http://arxiv.org/abs/2407.02055v1
- Date: Tue, 2 Jul 2024 08:37:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 16:14:40.368959
- Title: Abstract Dialectical Frameworks are Boolean Networks (full version)
- Title(参考訳): 抽象辞書フレームワークはBoolean Networks(フルバージョン)
- Authors: Jesse Heyninck, Matthias Knorr, João Leite,
- Abstract要約: 我々は,これらの2つの形式主義の関係と,その相違を明らかにすること,および,個々の形式主義の新たな結果を確立するための対応について検討する。
- 参考スコア(独自算出の注目度): 7.324459578044214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dialectical frameworks are a unifying model of formal argumentation, where argumentative relations between arguments are represented by assigning acceptance conditions to atomic arguments. Their generality allow them to cover a number of different approaches with varying forms of representing the argumentation structure. Boolean regulatory networks are used to model the dynamics of complex biological processes, taking into account the interactions of biological compounds, such as proteins or genes. These models have proven highly useful for comprehending such biological processes, allowing to reproduce known behaviour and testing new hypotheses and predictions in silico, for example in the context of new medical treatments. While both these approaches stem from entirely different communities, it turns out that there are striking similarities in their appearence. In this paper, we study the relation between these two formalisms revealing their communalities as well as their differences, and introducing a correspondence that allows to establish novel results for the individual formalisms.
- Abstract(参考訳): 弁証的フレームワークは形式的議論の統一モデルであり、議論間の議論的関係は、受け入れ条件を原子的議論に割り当てることによって表される。
それらの一般性は、議論構造を表現する様々な形態の様々なアプローチをカバーできる。
ブール制御ネットワークは、タンパク質や遺伝子などの生物学的化合物の相互作用を考慮して、複雑な生物学的過程のダイナミクスをモデル化するために用いられる。
これらのモデルは、例えば新しい医学的治療の文脈において、既知の振る舞いを再現し、新しい仮説とシリコの予測をテストすることができるように、そのような生物学的プロセスを理解するのに非常に有用であることが証明されている。
どちらのアプローチも全く異なるコミュニティに由来するが、その出現には顕著な類似点があることが判明した。
本稿では,これらの2つの形式主義の関係と,その相違点を明らかにすること,および,個々の形式主義に新たな結果を与えるための対応を導入することを提案する。
関連論文リスト
- Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems [59.117526206317116]
Cellはさまざまなタスクやデータに対して,さまざまなモデルに適応的に進化可能であることを示す。
4つの実世界のデータセットの実験では、細胞は最先端のベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2024-05-29T02:35:23Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Bayesian Intrinsic Groupwise Image Registration: Unsupervised
Disentanglement of Anatomy and Geometry [53.645443644821306]
本稿では,医用画像の集団登録のための一般ベイズ学習フレームワークを提案する。
本稿では,潜在変数の推論手順を実現するために,新しい階層的変分自動符号化アーキテクチャを提案する。
心臓、脳、腹部の医療画像から得られた4つのデータセットを含む,提案された枠組みを検証する実験を行った。
論文 参考訳(メタデータ) (2024-01-04T08:46:39Z) - Agentivit\`a e telicit\`a in GilBERTo: implicazioni cognitive [77.71680953280436]
本研究の目的は,トランスフォーマーに基づくニューラルネットワークモデルが語彙意味論を推論するかどうかを検討することである。
考慮される意味的性質は、テリシティ(定性とも組み合わされる)と作用性である。
論文 参考訳(メタデータ) (2023-07-06T10:52:22Z) - Analyzing Diffusion as Serial Reproduction [12.389541192789167]
拡散モデルは、データを徐々にノイズにマッピングする拡散過程を反転させることでサンプルを合成することを学ぶ。
私たちの研究は、認知科学の古典的なパラダイムが、最先端の機械学習問題に光を当てる方法を強調しています。
論文 参考訳(メタデータ) (2022-09-29T14:35:28Z) - A Neural Approach for Detecting Morphological Analogies [7.89271130004391]
分析比例は "A is to B as C is to D" という形の言明である
形態的類似を検出するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-08-09T11:21:55Z) - Causal Analysis of Syntactic Agreement Mechanisms in Neural Language
Models [40.83377935276978]
本研究は、訓練済みニューラルネットワークモデルに因果媒介分析を適用した。
文法的屈折に対するモデルの好みの大きさについて検討する。
本研究は, 構文構造に応じて, 主語と主語を一致させる2つのメカニズムを観察する。
論文 参考訳(メタデータ) (2021-06-10T23:50:51Z) - Modelling Compositionality and Structure Dependence in Natural Language [0.12183405753834563]
言語学と集合論に基づいて、これらの概念の形式化がこの論文の前半で述べられている。
言語処理を行う認知システムは,特定の機能的制約を持つ必要がある。
単語埋め込み技術の進歩を利用して、関係学習のモデルがシミュレートされる。
論文 参考訳(メタデータ) (2020-11-22T17:28:50Z) - High-order Semantic Role Labeling [86.29371274587146]
本稿では,ニューラルセマンティックロールラベリングモデルのための高階グラフ構造を提案する。
これにより、モデルは孤立述語-引数対だけでなく、述語-引数対間の相互作用も明示的に考慮することができる。
CoNLL-2009ベンチマークの7つの言語に対する実験結果から、高次構造学習技術は強力なSRLモデルに有益であることが示された。
論文 参考訳(メタデータ) (2020-10-09T15:33:54Z) - On the Relationship Between Active Inference and Control as Inference [62.997667081978825]
アクティブ推論(英: Active Inference、AIF)は、生物学的エージェントがモデルエビデンスに束縛された変動を最小限に抑えることを示唆する脳科学の新たな枠組みである。
制御・アズ・推論(英: Control-as-Inference, CAI)は、意思決定を変分推論問題とみなす強化学習の枠組みである。
論文 参考訳(メタデータ) (2020-06-23T13:03:58Z) - Do Neural Models Learn Systematicity of Monotonicity Inference in
Natural Language? [41.649440404203595]
本稿では,ニューラルネットワークが自然言語の単調推論の体系性を学習できるかどうかを評価する手法を提案する。
単調性推論の4つの側面を考察し、モデルが異なるトレーニング/テスト分割における語彙的および論理的現象を体系的に解釈できるかどうかを検証する。
論文 参考訳(メタデータ) (2020-04-30T14:48:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。