論文の概要: GemmAr: Enhancing LLMs Through Arabic Instruction-Tuning
- arxiv url: http://arxiv.org/abs/2407.02147v2
- Date: Tue, 9 Jul 2024 15:36:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 22:42:25.643412
- Title: GemmAr: Enhancing LLMs Through Arabic Instruction-Tuning
- Title(参考訳): GemmAr:アラビア語の指導によるLLMの強化
- Authors: Hasna Chouikhi, Manel Aloui, Cyrine Ben Hammou, Ghaith Chaabane, Haithem Kchaou, Chehir Dhaouadi,
- Abstract要約: InstAr-500kは、コンテンツの生成と収集によって生成された新しいアラビア文字の命令データセットである。
我々は,オープンソースのGemma-7Bモデルを下流タスクで微調整し,その機能を改善することにより,このデータセットを評価する。
複数の評価結果に基づき, アラビアNLPベンチマークにおいて, 微調整モデルにより優れた性能が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have greatly impacted the natural language processing (NLP) field, particularly for the English language. These models have demonstrated capabilities in understanding and generating human-like text. The success of language models largely depends on the availability of high-quality instruction datasets, which consist of detailed task descriptions and corresponding responses that are essential for training the models to address a variety of prompts accurately. However, the availability and quality of these resources vary by language. While models perform well in English, they often need help with languages like Arabic, due to the lack of datasets for fine-tuning Arabic-specific tasks. To address this issue, we introduce InstAr-500k, a new Arabic instruction dataset created by generating and collecting content that covers several domains and instruction types. We assess this dataset by fine-tuning an open-source Gemma-7B model on several downstream tasks to improve its functionality. Based on multiple evaluations, our fine-tuned model achieves excellent performance on several Arabic NLP benchmarks. These outcomes emphasize the effectiveness of our dataset in elevating the capabilities of language models for Arabic. Our instruction dataset bridges the performance gap between English and Arabic language models by providing resources that amplify Arabic NLP development. Building on this foundation, we developed a model, GemmAr-7B-V1, specifically tuned to excel at a wide range of Arabic NLP tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、特に英語の自然言語処理(NLP)分野に大きな影響を与えている。
これらのモデルは、人間のようなテキストを理解して生成する能力を示している。
言語モデルの成功は、様々なプロンプトに正確に対処するためにモデルのトレーニングに不可欠である詳細なタスク記述とそれに対応する応答からなる高品質な命令データセットの可用性に大きく依存する。
しかし、これらのリソースの可用性と品質は言語によって異なる。
モデルは英語でうまく機能するが、微調整のアラビア特化タスクのためのデータセットが不足しているため、アラビア語のような言語を援助する必要があることが多い。
InstAr-500kは、複数のドメインと命令タイプをカバーするコンテンツを生成し、収集するアラビア文字の命令データセットである。
我々は,オープンソースのGemma-7Bモデルを下流タスクで微調整し,その機能を改善することにより,このデータセットを評価する。
複数の評価結果に基づき, アラビアNLPベンチマークにおいて, 微調整モデルにより優れた性能が得られた。
これらの結果は、アラビア語の言語モデルの能力を高めるために、我々のデータセットの有効性を強調している。
我々の指導データセットは、アラビア語のNLP開発を増幅するリソースを提供することで、英語とアラビア語のモデルのパフォーマンスギャップを埋める。
この基礎の上に構築したモデルGemmAr-7B-V1は、アラビア語のNLPタスクを多種多様なタスクで実行するために特別に調整された。
関連論文リスト
- Resource-Aware Arabic LLM Creation: Model Adaptation, Integration, and Multi-Domain Testing [0.0]
本稿では,4GB VRAMしか持たないシステム上で,量子化低ランク適応(QLoRA)を用いたアラビア語処理のためのQwen2-1.5Bモデルを微調整する新しい手法を提案する。
Bactrian、OpenAssistant、Wikipedia Arabic corporaなどの多様なデータセットを使用して、この大きな言語モデルをアラビア語領域に適応する過程を詳述する。
1万以上のトレーニングステップの実験結果は、最終的な損失が0.1083に収束するなど、大幅なパフォーマンス向上を示している。
論文 参考訳(メタデータ) (2024-12-23T13:08:48Z) - ALLaM: Large Language Models for Arabic and English [9.881560166505452]
アラビア語技術(ALT)のエコシステムを支える一連の大規模言語モデルであるアラビア大言語モデル(ALaM: Arabic Large Language Model)を提示する。
我々の自己回帰デコーダのみのアーキテクチャモデルは、語彙拡張と事前訓練による第二言語習得が、原語(英語)で破滅的な忘れをすることなく、新しい言語(アラビア語)へのモデルを操る方法を示している。
人間の嗜好と広範囲なアライメントは,品質アライメントの低い大規模モデルと比較して言語モデルの性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2024-07-22T05:35:17Z) - Walia-LLM: Enhancing Amharic-LLaMA by Integrating Task-Specific and Generative Datasets [2.8123257987021058]
タスク固有および生成データセットを統合することでLLaMA-2-Amharicモデルの強化に注力する。
我々はAmharic命令の微調整データセットとLLaMA-2-Amharicモデルをコンパイルする。
微調整されたモデルは、異なるNLPタスクで有望な結果を示す。
論文 参考訳(メタデータ) (2024-02-12T19:25:11Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットにおけるNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
本稿では,アラビア語のテキストによる事前学習,ネイティブなアラビア語命令を利用したSFT(Supervised Fine-Tuning),アラビア語のGPT-4応答を含む総合的なソリューションを提案する。
目標は、文化的に認知され、価値に整合したアラビア語のLLMを、多様で応用特有のアラビア語コミュニティのニーズに適応させることである。
論文 参考訳(メタデータ) (2023-09-21T13:20:13Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
半構造化テキストデータにおける言語間名前認識のための効率的なモデリングフレームワークを提案する。
我々は2つの独立したSMSデータセットを英語とアラビア語で使用し、それぞれが半構造化された銀行取引情報を持っている。
わずか30のラベル付きサンプルにアクセスすることで、我々のモデルは、英語からアラビア語までの商人、金額、その他の分野の認識を一般化することができる。
論文 参考訳(メタデータ) (2023-07-16T00:45:42Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - AraMUS: Pushing the Limits of Data and Model Scale for Arabic Natural
Language Processing [25.5682279613992]
AraMUSはアラビア最大のPLMで、高品質のアラビア文字データ529GBで訓練された11Bパラメータを持つ。
AraMUSはアラビア語の分類と生成タスクの多様なセットで最先端のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-06-11T22:55:18Z) - Crosslingual Generalization through Multitask Finetuning [80.8822603322471]
マルチタスク誘導ファインタニング(MTF)は、大きな言語モデルがゼロショット設定で新しいタスクに一般化するのに役立つことが示されている。
MTFを事前訓練された多言語BLOOMおよびmT5モデルファミリーに適用し、BLOOMZおよびmT0と呼ばれる微調整された変種を生成する。
英語のプロンプトを用いた英語タスクにおける多言語多言語モデルの微調整により、非英語言語へのタスク一般化が可能となる。
論文 参考訳(メタデータ) (2022-11-03T13:19:32Z) - Can Character-based Language Models Improve Downstream Task Performance
in Low-Resource and Noisy Language Scenarios? [0.0]
我々は、ナラビジ(NArabizi)と呼ばれるラテン文字の拡張を用いて書かれた北アフリカ方言のアラビア語に焦点を当てている。
ナラビジの99k文のみを学習し,小さな木バンクで微調整したキャラクタベースモデルは,大規模多言語モデルとモノリンガルモデルで事前学習した同じアーキテクチャで得られたものに近い性能を示す。
論文 参考訳(メタデータ) (2021-10-26T14:59:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。