Towards Training Music Taggers on Synthetic Data
- URL: http://arxiv.org/abs/2407.02156v1
- Date: Tue, 2 Jul 2024 10:54:23 GMT
- Title: Towards Training Music Taggers on Synthetic Data
- Authors: Nadine Kroher, Steven Manangu, Aggelos Pikrakis,
- Abstract summary: We release GTZAN-synth, a synthetic dataset that follows the taxonomy of the well-known GTZAN dataset while being ten times larger in data volume.
We investigate domain adaptation, transfer learning and fine-tuning strategies for the task at hand and draw the conclusion that the last two options yield an increase in accuracy.
- Score: 2.1779479916071067
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Most contemporary music tagging systems rely on large volumes of annotated data. As an alternative, we investigate the extent to which synthetically generated music excerpts can improve tagging systems when only small annotated collections are available. To this end, we release GTZAN-synth, a synthetic dataset that follows the taxonomy of the well-known GTZAN dataset while being ten times larger in data volume. We first observe that simply adding this synthetic dataset to the training split of GTZAN does not result into performance improvements. We then proceed to investigating domain adaptation, transfer learning and fine-tuning strategies for the task at hand and draw the conclusion that the last two options yield an increase in accuracy. Overall, the proposed approach can be considered as a first guide in a promising field for future research.
Related papers
- Little Giants: Synthesizing High-Quality Embedding Data at Scale [71.352883755806]
We introduce SPEED, a framework that aligns open-source small models to efficiently generate large-scale embedding data.
SPEED uses only less than 1/10 of the GPT API calls, outperforming the state-of-the-art embedding model E5_mistral when both are trained solely on their synthetic data.
arXiv Detail & Related papers (2024-10-24T10:47:30Z) - Generating Synthetic Datasets for Few-shot Prompt Tuning [48.10054761841462]
In few-shot learning settings, prompt tuning lags far behind full-model fine-tuning, limiting its scope of application.
In this paper, we leverage the powerful LLMs to synthesize task-specific labeled data for training the soft prompts.
We train soft prompts on both synthetic and real datasets using a gradient surgery approach.
arXiv Detail & Related papers (2024-10-08T01:00:02Z) - Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data [69.7174072745851]
We present Synthio, a novel approach for augmenting small-scale audio classification datasets with synthetic data.
To overcome the first challenge, we align the generations of the T2A model with the small-scale dataset using preference optimization.
To address the second challenge, we propose a novel caption generation technique that leverages the reasoning capabilities of Large Language Models.
arXiv Detail & Related papers (2024-10-02T22:05:36Z) - Analyzing and reducing the synthetic-to-real transfer gap in Music Information Retrieval: the task of automatic drum transcription [0.6554326244334866]
A popular method used to increase the amount of data is by generating them synthetically from music scores rendered with virtual instruments.
This method can produce a virtually infinite quantity of tracks, but empirical evidence shows that models trained on previously created synthetic datasets do not transfer well to real tracks.
In this work, besides increasing the amount of data, we identify and evaluate three more strategies that practitioners can use to improve the realism of the generated data.
arXiv Detail & Related papers (2024-07-29T09:17:16Z) - Enriched BERT Embeddings for Scholarly Publication Classification [0.13654846342364302]
The NSLP 2024 FoRC Task I addresses this challenge organized as a competition.
The goal is to develop a classifier capable of predicting one of 123 predefined classes from the Open Research Knowledge Graph (ORKG) taxonomy of research fields for a given article.
arXiv Detail & Related papers (2024-05-07T09:05:20Z) - Relation Extraction in underexplored biomedical domains: A
diversity-optimised sampling and synthetic data generation approach [0.0]
sparsity of labelled data is an obstacle to the development of Relation Extraction models.
We create the first curated evaluation dataset and extracted literature items from the LOTUS database to build training sets.
We evaluate the performance of standard fine-tuning as a generative task and few-shot learning with open Large Language Models.
arXiv Detail & Related papers (2023-11-10T19:36:00Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Improving Zero and Few-Shot Abstractive Summarization with Intermediate
Fine-tuning and Data Augmentation [101.26235068460551]
Models pretrained with self-supervised objectives on large text corpora achieve state-of-the-art performance on English text summarization tasks.
Models are typically fine-tuned on hundreds of thousands of data points, an infeasible requirement when applying summarization to new, niche domains.
We introduce a novel and generalizable method, called WikiTransfer, for fine-tuning pretrained models for summarization in an unsupervised, dataset-specific manner.
arXiv Detail & Related papers (2020-10-24T08:36:49Z) - Learning to Count in the Crowd from Limited Labeled Data [109.2954525909007]
We focus on reducing the annotation efforts by learning to count in the crowd from limited number of labeled samples.
Specifically, we propose a Gaussian Process-based iterative learning mechanism that involves estimation of pseudo-ground truth for the unlabeled data.
arXiv Detail & Related papers (2020-07-07T04:17:01Z) - Abstractive Summarization for Low Resource Data using Domain Transfer
and Data Synthesis [1.148539813252112]
We explore using domain transfer and data synthesis to improve the performance of recent abstractive summarization methods.
We show that tuning state of the art model trained on newspaper data could boost performance on student reflection data.
We propose a template-based model to synthesize new data, which when incorporated into training further increased ROUGE scores.
arXiv Detail & Related papers (2020-02-09T17:49:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.