Structure-Aware Consensus Network on Graphs with Few Labeled Nodes
- URL: http://arxiv.org/abs/2407.02188v1
- Date: Tue, 2 Jul 2024 11:46:07 GMT
- Title: Structure-Aware Consensus Network on Graphs with Few Labeled Nodes
- Authors: Shuaike Xu, Xiaolin Zhang, Peng Zhang, Kun Zhan,
- Abstract summary: Graph node classification with few labeled nodes presents significant challenges due to limited supervision.
Conventional methods often exploit the graph in a transductive learning manner.
We introduce a Structure-Aware Consensus Network (SACN) to overcome these issues.
- Score: 7.438140196173472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph node classification with few labeled nodes presents significant challenges due to limited supervision. Conventional methods often exploit the graph in a transductive learning manner. They fail to effectively utilize the abundant unlabeled data and the structural information inherent in graphs. To address these issues, we introduce a Structure-Aware Consensus Network (SACN) from three perspectives. Firstly, SACN leverages a novel structure-aware consensus learning strategy between two strongly augmented views. The proposed strategy can fully exploit the potentially useful information of the unlabeled nodes and the structural information of the entire graph. Secondly, SACN uniquely integrates the graph's structural information to achieve strong-to-strong consensus learning, improving the utilization of unlabeled data while maintaining multiview learning. Thirdly, unlike two-branch graph neural network-based methods, SACN is designed for multiview feature learning within a single-branch architecture. Furthermore, a class-aware pseudolabel selection strategy helps address class imbalance and achieve effective weak-to-strong supervision. Extensive experiments on three benchmark datasets demonstrate SACN's superior performance in node classification tasks, particularly at very low label rates, outperforming state-of-the-art methods while maintaining computational simplicity.The source code is available at https://github.com/kunzhan/SACN
Related papers
- Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - SMARTQUERY: An Active Learning Framework for Graph Neural Networks
through Hybrid Uncertainty Reduction [25.77052028238513]
We propose a framework to learn a graph neural network with very few labeled nodes using a hybrid uncertainty reduction function.
We demonstrate the competitive performance of our method against state-of-the-arts on very few labeled data.
arXiv Detail & Related papers (2022-12-02T20:49:38Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Meta Propagation Networks for Graph Few-shot Semi-supervised Learning [39.96930762034581]
We propose a novel network architecture equipped with a novel meta-learning algorithm to solve this problem.
In essence, our framework Meta-PN infers high-quality pseudo labels on unlabeled nodes via a meta-learned label propagation strategy.
Our approach offers easy and substantial performance gains compared to existing techniques on various benchmark datasets.
arXiv Detail & Related papers (2021-12-18T00:11:56Z) - ROD: Reception-aware Online Distillation for Sparse Graphs [23.55530524584572]
We propose ROD, a novel reception-aware online knowledge distillation approach for sparse graph learning.
We design three supervision signals for ROD: multi-scale reception-aware graph knowledge, task-based supervision, and rich distilled knowledge.
Our approach has been extensively evaluated on 9 datasets and a variety of graph-based tasks.
arXiv Detail & Related papers (2021-07-25T11:55:47Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z) - On the Equivalence of Decoupled Graph Convolution Network and Label
Propagation [60.34028546202372]
Some work shows that coupling is inferior to decoupling, which supports deep graph propagation better.
Despite effectiveness, the working mechanisms of the decoupled GCN are not well understood.
We propose a new label propagation method named propagation then training Adaptively (PTA), which overcomes the flaws of the decoupled GCN.
arXiv Detail & Related papers (2020-10-23T13:57:39Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
This paper proposes a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN)
KE-GCN combines the power of Graph Convolutional Network (GCN) in graph-based belief propagation and the strengths of advanced knowledge embedding methods.
Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases.
arXiv Detail & Related papers (2020-06-12T17:12:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.