論文の概要: Research on Reliable and Safe Occupancy Grid Prediction in Underground Parking Lots
- arxiv url: http://arxiv.org/abs/2407.02197v1
- Date: Tue, 2 Jul 2024 11:56:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 15:35:30.797631
- Title: Research on Reliable and Safe Occupancy Grid Prediction in Underground Parking Lots
- Title(参考訳): 地下駐車場における信頼性・安全運転網予測に関する研究
- Authors: JiaQi Luo,
- Abstract要約: この研究は、特に地下駐車場のような見過ごされがちな場所で、屋内自動運転に取り組む。
CARLAのシミュレーションプラットフォームを使用して、データ収集のための現実的な駐車モデルを作成する。
占有グリッドネットワークは、このデータを処理して車両の経路や障害物を予測し、複雑な屋内環境におけるシステムの知覚を高める。
- 参考スコア(独自算出の注目度): 0.5439020425819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Against the backdrop of advancing science and technology, autonomous vehicle technology has emerged as a focal point of intense scrutiny within the academic community. Nevertheless, the challenge persists in guaranteeing the safety and reliability of this technology when navigating intricate scenarios. While a substantial portion of autonomous driving research is dedicated to testing in open-air environments, such as urban roads and highways, where the myriad variables at play are meticulously examined, enclosed indoor spaces like underground parking lots have, to a significant extent, been overlooked in the scholarly discourse. This discrepancy highlights a gap in derstanding the unique challenges these confined settings pose for autonomous navigation systems. This study tackles indoor autonomous driving, particularly in overlooked spaces like underground parking lots. Using CARLA's simulation platform, a realistic parking model is created for data gathering. An occupancy grid network then processes this data to predict vehicle paths and obstacles, enhancing the system's perception in complex indoor environments. Ultimately, this strategy improves safety in autonomous parking operations. The paper meticulously evaluates the model's predictive capabilities, validating its efficacy in the context of underground parking. Our findings confirm that the proposed strategy successfully enhances autonomous vehicle performance in these complex indoor settings. It equips autonomous systems with improved adaptation to underground lots, reinforcing safety measures and dependability. This work paves the way for future advancements and applications by addressing the research shortfall concerning indoor parking environments, serving as a pivotal reference point.
- Abstract(参考訳): 科学と技術の進歩を背景に、自動運転車技術は学術界における厳しい監視の焦点として浮上してきた。
それでも、複雑なシナリオをナビゲートする際には、この技術の安全性と信頼性を保証することが課題である。
自律運転研究のかなりの部分は、都市道路や高速道路などの屋外環境での試験に費やされているが、そこでは無数の変数が慎重に検討されているため、地下駐車場のような囲い込み屋内空間は、学術的な議論では見過ごされている。
この不一致は、これらの制限された設定が自律ナビゲーションシステムにもたらすユニークな課題を克服する上でのギャップを浮き彫りにする。
この研究は、特に地下駐車場のような見過ごされがちな場所で、屋内自動運転に取り組む。
CARLAのシミュレーションプラットフォームを使用して、データ収集のための現実的な駐車モデルを作成する。
占有グリッドネットワークは、このデータを処理して車両の経路や障害物を予測し、複雑な屋内環境におけるシステムの知覚を高める。
最終的に、この戦略は自律駐車運転の安全性を向上させる。
本論文は、地下駐車場におけるモデルの有効性を検証し、モデルの有効性を慎重に評価する。
これらの複雑な屋内環境において,提案手法が自律走行車の性能向上に有効であることが確認された。
地下駐車場への適応性を向上し、安全対策と信頼性を強化した自律システムを備えている。
本研究は、屋内駐車場環境に関する研究不足に対処し、重要な基準点として機能することで、今後の発展と応用の道を開くものである。
関連論文リスト
- A Computer Vision Approach for Autonomous Cars to Drive Safe at Construction Zone [0.0]
自律運転システム(ADS)を搭載した車は、適応クルーズ制御、衝突警報、自動駐車など、様々な最先端機能を備えている。
本稿では,多様なドリフト条件下で構築ゾーンや機能で動作可能なコンピュータビジョン技術を利用した,革新的で高精度な道路障害物検出モデルを提案する。
論文 参考訳(メタデータ) (2024-09-24T07:11:00Z) - Acceleration method for generating perception failure scenarios based on editing Markov process [0.0]
本研究では, 地下駐車場環境に合わせて, 認識障害シナリオを高速化する手法を提案する。
この方法は、認識障害シナリオの密度の高いインテリジェントなテスト環境を生成する。
認識障害シナリオデータ内のマルコフプロセスを編集し、トレーニングデータ内の臨界情報の密度を増大させる。
論文 参考訳(メタデータ) (2024-07-01T05:33:48Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Scalable Decentralized Cooperative Platoon using Multi-Agent Deep
Reinforcement Learning [2.5499055723658097]
本稿では,交通流と安全を向上する車両小隊方式を提案する。
Unity 3Dゲームエンジンで深層強化学習を用いて開発されている。
提案した小隊モデルは、スケーラビリティ、分散化、ポジティブな協力の促進に重点を置いている。
論文 参考訳(メタデータ) (2023-12-11T22:04:38Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - SHINE: Deep Learning-Based Accessible Parking Management System [1.7109513360384465]
自家用車の増加により、障害者の駐車スペースが乱用されている。
従来のライセンスプレート認識(LPR)システムは、そのような問題にリアルタイムで対処する上で非効率であることが証明されている。
我々は,深層学習に基づく物体検出アルゴリズムを用いて車両を検知するシステム,Shineを提案する。
論文 参考訳(メタデータ) (2023-02-02T02:46:52Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
本稿では,視覚に基づくエンドツーエンド自動運転のための安全保証学習フレームワークを提案する。
我々は、勾配降下によりエンドツーエンドに訓練された微分制御バリア関数(dCBF)を備えた学習システムを設計する。
論文 参考訳(メタデータ) (2022-03-04T16:14:33Z) - Smart Parking Space Detection under Hazy conditions using Convolutional
Neural Networks: A Novel Approach [0.0]
本稿では, 空き環境下での駐車スペース占有性能を向上させるデハジングネットワークの利用について検討する。
提案システムは既存のスマートパーキングシステムの一部として展開可能で、数百台のパーキングスペースを監視するために、限られた数のカメラが使用されている。
論文 参考訳(メタデータ) (2022-01-15T14:15:46Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。