Learning Paradigms and Modelling Methodologies for Digital Twins in Process Industry
- URL: http://arxiv.org/abs/2407.02275v1
- Date: Tue, 2 Jul 2024 14:05:10 GMT
- Title: Learning Paradigms and Modelling Methodologies for Digital Twins in Process Industry
- Authors: Michael Mayr, Georgios C. Chasparis, Josef Küng,
- Abstract summary: Digital Twins (DTs) are virtual replicas of physical manufacturing systems that combine sensor data with sophisticated data-based or physics-based models, or a combination thereof, to tackle a variety of industrial-relevant tasks like process monitoring, predictive control or decision support.
The backbone of a DT, i.e. the concrete modelling methodologies and architectural frameworks supporting these models, are complex, diverse and evolve fast, necessitating a thorough understanding of the latest state-of-the-art methods and trends to stay on top of a highly competitive market.
- Score: 1.1060425537315088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Central to the digital transformation of the process industry are Digital Twins (DTs), virtual replicas of physical manufacturing systems that combine sensor data with sophisticated data-based or physics-based models, or a combination thereof, to tackle a variety of industrial-relevant tasks like process monitoring, predictive control or decision support. The backbone of a DT, i.e. the concrete modelling methodologies and architectural frameworks supporting these models, are complex, diverse and evolve fast, necessitating a thorough understanding of the latest state-of-the-art methods and trends to stay on top of a highly competitive market. From a research perspective, despite the high research interest in reviewing various aspects of DTs, structured literature reports specifically focusing on unravelling the utilized learning paradigms (e.g. self-supervised learning) for DT-creation in the process industry are a novel contribution in this field. This study aims to address these gaps by (1) systematically analyzing the modelling methodologies (e.g. Convolutional Neural Network, Encoder-Decoder, Hidden Markov Model) and paradigms (e.g. data-driven, physics-based, hybrid) used for DT-creation; (2) assessing the utilized learning strategies (e.g. supervised, unsupervised, self-supervised); (3) analyzing the type of modelling task (e.g. regression, classification, clustering); and (4) identifying the challenges and research gaps, as well as, discuss potential resolutions provided.
Related papers
- A Survey of Model Architectures in Information Retrieval [64.75808744228067]
We focus on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation.
We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs)
We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
arXiv Detail & Related papers (2025-02-20T18:42:58Z) - Transforming Engineering Education Using Generative AI and Digital Twin Technologies [0.632032341649772]
This study investigates the application of industrial digital twins (DTs) in education.
It focuses on how DT models of varying fidelity can support different stages of Bloom's taxonomy in the cognitive domain.
arXiv Detail & Related papers (2024-11-02T07:16:47Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - Vision Foundation Models in Remote Sensing: A Survey [6.036426846159163]
Foundation models are large-scale, pre-trained AI models capable of performing a wide array of tasks with unprecedented accuracy and efficiency.
This survey aims to serve as a resource for researchers and practitioners by providing a panorama of advances and promising pathways for continued development and application of foundation models in remote sensing.
arXiv Detail & Related papers (2024-08-06T22:39:34Z) - iNNspector: Visual, Interactive Deep Model Debugging [8.997568393450768]
We propose a conceptual framework structuring the data space of deep learning experiments.
Our framework captures design dimensions and proposes mechanisms to make this data explorable and tractable.
We present the iNNspector system, which enables tracking of deep learning experiments and provides interactive visualizations of the data.
arXiv Detail & Related papers (2024-07-25T12:48:41Z) - Current Trends in Digital Twin Development, Maintenance, and Operation: An Interview Study [0.2871849986181679]
Digital twins (DT) are often defined as a pairing of a physical entity and a corresponding virtual entity (VE)
We performed a semi-structured interview research with 19 professionals from industry and academia who are closely associated with different lifecycle stages of digital twins.
arXiv Detail & Related papers (2023-06-16T12:19:28Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision.
We model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints.
arXiv Detail & Related papers (2023-02-16T16:45:36Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Structured learning of rigid-body dynamics: A survey and unified view
from a robotics perspective [5.597839822252915]
We study supervised regression models that combine rigid-body mechanics with data-driven modelling techniques.
We provide a unified view on the combination of data-driven regression models, such as neural networks and Gaussian processes, with analytical model priors.
arXiv Detail & Related papers (2020-12-11T11:26:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.